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Multiple-timescale systems are a noteworthy class of dynamic systems that can be modeled with singularly

perturbed differential equations. Adaptive control has not been studied in the context of singularly perturbed

plants. This paper introduces and evaluates three methods of adaptive control for multiple-timescale systems.

Each method is a framework that is valid for a wide class of adaptive control methods. Full-order adaptive control

(FOAC) applies adaptive control to the systemas awhole. It is straightforwardbut canbe sensitive to timescale effects.

Reduced-order adaptive control (ROAC) applies adaptive control to either the fast or slowmodes only. This simplifies

synthesis but can also constrain the range of valid timescale separation. [K]Control of Adaptive Multiple-Timescale

Systems (KAMS) fuses two adaptive control signals using multiple-timescale techniques. KAMS takes advantage of

model reduction unlike FOAC, and allows for unstable fast dynamics unlike ROAC. Generalized formal definitions,

stability criteria, and examples are developed and presented for each method. Results presented in the paper for the

control of a Boeing 747-100/200 on approach show that KAMS has a desirable blend of performance and robustness

because each reduced-order model is stabilized separately.

Nomenclature

Am = slow reference model state matrix
Ax = uncertain slow dynamics state matrix
Az = fast dynamics state matrix
Bm = slow reference model input matrix
Bx = slow dynamics input matrix
Bz = fast dynamics input matrix
Cm = fast reference model state matrix
d = arbitrary number between zero and one
ex = error between the slow states and their reference

model x − xm
ez = error between the fast states and their reference model

z − zm
eα = error between the angle of attack and its reference

model α − αm
f = function describing the slow time derivative of the

slow states
g = function describing the slow time derivative of the fast

states
h = function describing the manifold z0
I = identity matrix
i = integer index
j = integer index
Kr = control gain multiplied by r
~Kr

= error between the estimate of Kr and its true value

K̂r − Kr

Kx = control gain multiplied by x
~Kx

= error between the estimate of Kx and its true value

K̂x − Kx

Kz = control gain multiplied by z
~Kz

= error between the estimate of Kz and its true value

K̂z − Kz

k = function describing the input
L∞ = set of all functions with bounded L-infinity

norms
l = function describing the slow time derivative of the

estimate of the uncertain parameters
m = function describing the slow time derivative of the

slow reference model states
n = function describing the slow time derivative of the

slow reference model input
nr = number of slow reference model inputs
nu = number of inputs
nx = number of slow states
nz = number of fast states
nθ = number of uncertain parameters
Px = solution to the Lyapunov equation for the reference

model
Pz = solution to the Lyapunov equation for the closed-loop

fast subsystem
p = function describing the slow time derivative of χ
Qx = arbitrary positive definite matrix
Qz = arbitrary positive definite matrix
q = body axis pitch rate
qs = function describing the true value of the slow uncer-

tain parameters θs
r = slow reference model input
s = Laplace variable
t = time (arbitrary timescale)
tf = fast timescale

ts = slow timescale
t� = time after which the slow subsystem is a good

approximation of the full-order system
u = plant input
uf = fast input designed to stabilize the fast subsystem

us = slow input designed to stabilize the slow subsystem
u = plant input
V = Lyapunov function for the full-order system
Vf = Lyapunov function for the fast subsystem

Vs = Lyapunov function for the slow subsystem
x = plant slow states
xm = slow reference model states
y = system output
z = plant fast states
zm = fast reference model states
z0 = fast state manifold
~z = error between the fast states and their manifold z − z0
~zm = error between the fast states reference model and the

manifold zm − z0
α = angle of attack
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αi = real numbers that are derived from the Lyapunov
functions of the subsystems i ∈ f1; 2g

βi = real numbers that are derived from the Lyapunov
functions of the subsystems i ∈ f1; 2g

Γr = adaptation rate gain for K̂r

Γx = adaptation rate gain for K̂x

Γxz = adaptation rate gain for K̂x and K̂z

γ = real number that is derived from the Lyapunov func-
tions of the subsystems

δe = elevator deflection
δe;c = commanded elevator deflection

δe;c;f = equivalent to uf but specifically referring to com-
manded elevator deflection

δe;c;s = equivalent to us but specifically referring to com-
manded elevator deflection

δe;0 = elevator deflection manifold

ϵ = timescale separation parameter ϵ ≜ ts∕tf
ϵ� = supremum for the timescale separation parameter
θ = uncertain parameters
θf = uncertain parameters in the fast subsystem

θs = uncertain parameters in the slow subsystem
~θ = error between the estimates of the uncertain parame-

ters and their true value θ̂ − θ
Λ = uncertain positive definite control effectiveness

matrix
λmin�⋅� = smallest eigenvalue of �⋅�
σmax�⋅� = maximum singular value of �⋅�
Φ = arbitrary function of ex used to show stability
χ = several states concatenated together �xT θ̂T xTm rT �T
Ψ = arbitrary function of ~z used to show stability
��⋅� = time derivative with respect to the fast timescale

d�⋅�∕dtf
��⋅� = time derivative with respect to the slow timescale

d�⋅�∕dts
^�⋅� = estimate of �⋅�
k�⋅�k2 = L-2 norm of �⋅�
0i×j = i × j-dimensional matrix of zeros

I. Introduction

M ANY dynamic systems can be modeled as multiple-timescale
systems using singular perturbation theory. Most systems with

fast and slow modes are good candidates for this type of modeling.
Linear systems meet this criterion when they have two or more natural
frequencies that differ by an order of magnitude. However, multiple-
timescale control can be applied to nonlinear systems too [1].Multiple-
timescale models have been developed for robotic arms [2], electrical
circuits [3], and even abstract systems likemanufacturing processes [4].
Many systems with actuator dynamics can be modeled as a multiple-
timescale system [5]. The separation of the phugoid and short-period
mode make fixed-wing aircraft multiple-timescale systems. Multiple-
timescale models have been published for F-16 aircraft [6] and hyper-
sonic aircraft [7]. Several examples of multiple-timescale models for
aerospace systems are given in [8], including digital flight control
systems, atmospheric entry, satellites, interplanetary trajectories, mis-
siles, launch vehicles, hypersonic flight, orbital transfers, flexible aero-
space structures, and space robotics. Despite their omnipresence, the
vastmajority ofmultiple-timescale control research focuses on systems
with known and time-invariant system models. Adaptive control
directly addresses systems with unknown and time-varying system
models. However, the effect of singularly perturbed plants on adaptive
control is yet to be fully explored. This paper addresses this gap in the
literature by investigating the benefits, complexities, and limitations of
adaptive control for multiple-timescale systems.
In this paper, singular perturbation theory is used to model and

analyze multiple-timescale behavior in the system plant. However,
some adaptive control researchers have applied singular perturbation
theory to control equations. Hovakimyan et al. developed such a
technique that numerically converges to dynamic inversion [9].
This is useful for algebraically intractable systems. Lavretsky and
Hovakimyan then expanded this method to explicitly include

adaptive control methods [10]. Hovakimyan and Lavretsky used
singular perturbation to ensure that the numerical convergence of
the control occurred faster than the dynamics of the system. Sun et al.
used a similar technique on underactuated Euler–Lagrange systems
[11]. Krishnamurthy and Khorrami investigated a similar technique
for a class of systemswith nonlinear input uncertainty [12].Asadi and
Khayatiyan [13] as well as Chakrabortty and Arcak [14] both exam-
ined a similar technique on a class of systems with matched and
unmatched uncertainty. Finally, Rayguru et al. [15] and Yang et al.
[16] showed a similar technique’s applicability to systems with input
saturation. Each of these examples used singular perturbation in the
control architecture. This paper addresses systems with plants that
are singularly perturbed.
Prior research into adaptive control for singularly perturbed plants

falls into two broad categories. These categories are identified for the
first time here and will be called reduced-order adaptive control
(ROAC) and full-order adaptive control (FOAC). ROAC separates
the fast and slow dynamics and then only applies adaptive control to
one of the two. FOAC applies adaptive control to the full-order system.
Examples of ROAC include Al-Radhawi et al., who modeled the
COVID-19 pandemic as a multiple-timescale system with adaptive
control applied to the fast subsystem [17]; Macchelli et al., who
modeled a leaking hydraulic press as a multiple-timescale system and
showed that the slow timescale leaking did not affect the adaptive
control in the fast timescale [18]; and Nguyen et al., who applied
adaptive control to an aircraft’s pitch dynamics when the elevator is
on a timescale that is much slower than the pitch dynamics [5]. Saha
et al. demonstrated a form of FOAC. They expanded sequential
multiple-timescale control to systems with model uncertainty. This
was applied to an F-16 aircraft [6,19], a spring-mass-damper [20],
and a satellite [21]. To do so, Saha et al. used parameter estimators
from adaptive control literature, but they did not use traditional adaptive
control techniques. That being said, Saha et al.’s method is, in fact, a
type ofmultiple-timescale adaptive control because the adaptive param-
eters are used in the control.
As described above, prior works in the literature on ROAC and

FOAC have not been formalized and used only for specific systems.
In the present work they are formalized and generalized to a wide
class of plants for the first time. More significantly, this work intro-
duces and develops a novel method of adaptive control for multiple-
timescale systems called [K]Control of AdaptiveMultiple-Timescale
Systems (KAMS). Both ROAC and FOAC use elements of adaptive
control and multiple-timescale control. KAMS fully and rigorously
merges these two fields using a separate controller for the slow and
fast dynamics, and then one of several multiple-timescale control
techniques to fuse the two signals together. KAMS is similar to the
control proposed by Ioannou andKokotovic, but more general in that
it addresses nonlinear systems and allows for increased coupling
[22]. The most general version of KAMS does allow adaptation in
both the fast and slow subsystems, but this paper focuses on the
prefatory problem of slow state tracking of a reference model with
slow timescale adaptation. Specifically, all adaptation is in the slow
timescale and the control objective is to stabilize the slow states, but
the methods presented are extensible to other cases. Section II intro-
duces the mathematical notation. Section III describes the three
adaptive control methodologies for multiple-timescale systems.
Section IV shows a numerical example of all three methods on the
multiple-timescale pitch rate dynamics of aBoeing 747-100/200with
actuator dynamics. This example highlights the similarities and
differences between the three methods showing that all three
multiple-timescale adaptive control methodologies are effective,
and each method has benefits and detriments.

II. Mathematical Preliminaries

Multiple-timescale systems are typically modeled as a system of
singularly perturbed differential equations with the form

�x � f�x; z;u� (1a)

ϵ �z � g�x; z; u; ϵ� (1b)
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In this system, u ∈ Rnu is the input vector; x ∈ Rnx and z ∈ Rnz are
both system state vectors. The accents above x and z on the left-hand
side are time derivatives. The timescale separation parameter 0 < ϵ ≪
1 is a very small number. The functions f and gmust be of relatively
the same order of magnitude so that in general �x ≪ �z. Because of this
relationship, x is called the slow states and z is called the fast states.
Due to the relative speed difference, it is easier to describe the motion
of the fast states using different units for time. These units are called
timescales. The subscript s is used to identifywhen the time is in slow
timescale (ts) and the subscript f is used for the fast timescale (tf).
The timescale separation parameter ϵ is the ratio of the timescales
ϵ � ts∕tf. For example, let ϵ � 1∕60. After 1 minute has passed

ts � 1 minute and tf � 60 s. The two different timescales allow for

two different time derivatives. In this present work, the derivative

with respect to the slow timescale is denoted d�⋅�∕dts � ��⋅� and the

derivativewith respect to the fast timescale is denotedd�⋅�∕dtf� ��⋅� .
Using the definition of the timescale separation parameter, it can be

seen that ϵ ��⋅� � ��⋅� . Practically, the timescale separation parameter
can be difficult to determine for nonlinear systems, but control
techniques exist that do not require precise knowledge of the time-
scale separation parameter [1].
One common analysis technique for multiple-timescale systems is

to approximate the system with two separate asymptotic solutions.
Taking the limit of Eq. (1) as ϵ → 0 gives

�x � f�x; z; u� (2a)

0 � g�x; z; u; 0� (2b)

If Eq. (2b) can be solved for z such that z0 � h�x; u� then the
system is called standard. The trajectory z0 is called the fast state
manifold or more simply themanifold. Physically, it represents the
steady-state trajectory of the fast states. Thus, the first asymptotic
model is

�x � f�x; z0;u� (3a)

z0 � h�x;u� (3b)

Using the relationship between the slow and fast derivatives

ϵ ��⋅� � ��⋅� , Eq. (1) can be converted to

�x � ϵf�x; z; u� (4a)

�z � g�x; z; u; ϵ� (4b)

The second asymptotic model is then found by again taking the
limit as ϵ → 0:

�x � 0 (5a)

�z � g�x; z; u; 0� (5b)

Equations (3) and (5) are called the reduced slow model and the
reduced fast model, respectively. Vasil’eva [23] and Tikhonov [24]
developed conditions under which the systemwill be approximated
by the reduced subsystems. This is known as Tikhonov’s theorem
([25], Theorem 9.1). Conceptually Tikhonov’s theorem says that
the fast states converge quickly to the manifold after which the
slow states evolve according to the reduced slow model. Notably,
Tikhonov’s theorem requires that the system be standard, but
similar results have been found for nonstandard systems using
geometric singular perturbation theory [1].
Various control techniques formultiple-timescale systems exist. In

this paper composite control will be used. Composite control designs
two control signals, one to stabilize the slow states (us�x�) and one to
drive the fast states to the manifold (uf�x;z�). These two control

signals are summed together so that

u � us�x� � uf�x; z� (6)

Notably, uf is chosen so that uf�x;z0� � 0. This requires knowledge

of the manifold.

III. Adaptive Control Methodologies

Consider the control objective of slow state tracking of a reference
model. The reference model is

�xm � Amxm � Bmr (7)

where Am ∈ Rnx×nx and Bm ∈ Rnx×nr are parameters, and r ∈ Rnr is
the reference model input. For all systems considered herein, the
system output is y � x. Let θ ∈ Rnθ be the true value of uncertain

parameters and θ̂ be the adaptive estimate of those parameters. If
direct adaptive control is used, then these parameters are control
gains. If indirect adaptive control is used, then these parameters are
system parameters. Note that at this point no precise structure for the
control law is given. This is because FOAC, ROAC, and KAMS as
described herein are highly generalized and applicable to awide class
of adaptive control methods. At this point any control law that fits the

format u � k�x; θ̂; xm; r; z� is valid. As is any adaptation law that fits

the format
�̂
θ � l�x; xm�. Slightly stricter definitions will be given

later in this paper as necessary. Three error signals can be defined
using the referencemodel, themanifold, and the parameter estimates.
These errors are similar to those seen in traditional adaptive control
(e.g., [26]), but the appearance and role of the manifold is a unique
aspect of the multiple-timescale adaptive control problem. The error
terms are

ex ≜ x − xm (8a)

~z ≜ z − z0 (8b)

~θ ≜ θ̂ − θ (8c)

In a few cases, a reference model is needed for the fast states

�~zm � Cm ~zm (9)

Another error can be defined as

ez ≜ ~z − ~zm (10a)

� z − zm (10b)

where zm is defined such that the pattern ~zm � zm − z0 holds.

A. Full-Order Adaptive Control

The most intuitive solution to multiple-timescale adaptive control
is to treat multiple-timescale systems like other systems. Equation (1)
can be rewritten as

�x � f�x; z;u� (11a)

�z � 1

ϵ
g�x; z; u; ϵ� (11b)

In which x and z can be concatenated into a single state vector. If a
valid adaptive control methodology exists for the resulting system,
then there is no reason that the adaptive control algorithm will not
work. The following theorem formalizes this conceptual definition
of FOAC.
Theorem 1: Consider the system in Eq. (1). If there exists an

adaptive controller that accomplishes the control objective for the
equivalent system in Eq. (11) and assuming that said adaptive control
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problem is well-posed (i.e., its assumptions are satisfied), then the
adaptive controller for Eq. (11) is also valid for Eq. (1).
Proof: The timescale separation parameter, whereas often

unknown, is simply a fixed scalar value. Additionally, the timescale
separation parameter is very small, but not zero. Thus, dividing by the
timescale separation parameter is valid. Further, dividing by the
timescale separation parameter does not affect the time evolution
the system states x and z. □

Theorem 1 seems simple and obvious, but the results are signifi-
cant to FOAC. Effectively, Theorem 1 states that the singularly
perturbed nature of Eq. (1) does not inhibit the use of normal adaptive
control techniques. Theorem 1 seems to imply that multiple-
timescale systems are no different from traditional systems and can
be controlled similarly. However, Theorem 1 is not always robust to
timescale effects. For example, timescale effects can cause high-
frequency oscillations. This is demonstrated in the example at the
end of this paper. Sensitivity to the timescale separation parameter is a
major disadvantage because the timescale separation parameter is
frequently unknown. This is particularly true for systems with model
uncertainties because the timescale separation parameter is a function
of system parameters and is related to the form of the dynamics. In
other words, multiple-timescale systems that require adaptive control
are even more likely to have large uncertainty bounds on the time-
scale separation parameter. This problem is exacerbated by the ϵ−1

term in Eq. (11). Because 0 < ϵ ≪ 1, small inaccuracies in estimating
the timescale separation parameter can cause large discrepancies
between the predicted and actual system response. Traditional
multiple-timescale control methodologies account for this problem
by giving a range of valid timescale separation parameters. However,
Theorem 1 does not immediately give rise to any such valid range.

B. Reduced-Order Adaptive Control

If either the reduced fast model or the reduced slow model is
stable, then one intuitive approach to adaptive multiple-timescale
control is to apply adaptive control to the other reduced-ordermodel
and rely on the inherent stability of the discounted dynamics to
assure convergence. This technique is ROAC and is by far the most
common method of designing controllers for multiple-timescale
systems. All models that discount fast actuator dynamics inherently
apply ROAC.
The problems incurred by reducing a model have been studied in

the adaptive control literature, in which the discounted dynamics are
often treated as a time delay (e.g., [27]) or unmodeled dynamics (e.g.,
[28]). The primary challenge is that inputs to one reduced-order
model can excite dynamic modes in the other reduced-order model.
It has been shown that even stable discounted dynamics can be driven
unstable in this manner [29]. Narang-Siddarth and Valasek demon-
strated this problem with multiple-timescale systems ([1], p. 46).
Theorem 2: Consider the system in Eq. (1), its reduced-order

models in Eqs. (3) and (5), and its manifold z0. Suppose that the
following conditions are true:
A) Let �xm � m�xm; r� be a referencemodel for the slow stateswith

input r.
B) Assume that r, �r ∈ L∞ and �r � n�ts�.
C) Given a valid adaptive controller, u � k�x; θ̂; xm; r�, which

satisfies the control objective for the reduced slow model.

D) Let
�̂
θ � l�x; xm� be the adaptive laws for that adaptive con-

troller.
E) Assume that the functions f, g, k, l,m, and n are continuous for

all x, z, and t.
F) Also assume that the system is standard such that the manifold

exists and the reduced subsystems are well defined.
G) Assume that in the context of the closed-loop full-order dynam-

ics the fast state manifold z0 is an asymptotically stable equilibrium
and the initial conditions are within the region of attraction for that
equilibrium.
H) Finally, assume that

�̂
θ, �xm, and �r are on the order of (i.e., have

the same order of magnitude as) �x.
Then there exists a timescale separation parameter 0 < ϵ� ≪ 1,

and ∃ a time after the initial time t0 < t��ϵ�� such that ∀ϵ < ϵ� the

difference between the closed-loop full-order model, and the closed-
loop reduced slow model is on the order of ϵ� after t�.
Proof:Consider the full-order closed-loop dynamics.Define a new

state vector

χ ≜ xT θ̂T xTm rT T (12)

Using the definitions given by (A), (B), and (D),

�χ � f�x; z; u�T l�x; xm�T m�xm; r�T n�t�T T (13)

Recall from (C) that u � k�x; θ̂; xm; r� and substitute

�χ � f�x; z; k�x; θ̂; xm; r��T l�x; xm�T m�xm; r�T n�t�T T

(14)
Let p be a vector function such that

�χ � p� χ ; z; t� (15)

Now recall the full-order closed-loop fast state dynamics
ϵ �z � g�x;z; u; ϵ�. Similar to �χ , �z can be rewritten using (C):

ϵ �z � g�x; z; k�x; θ̂; xm; r�; ϵ� (16)

or equivalently

ϵ �z � g� χ ; z; ϵ� (17)

Due to condition (H), all of the states in χ are of the same timescale.
Thus Eqs. (15) and (17) taken together form a multiple-timescale
system:

�χ � p� χ ; z; t� (18a)

ϵ �z � g� χ ; z; ϵ� (18b)

Note that the manifold for this new multiple-timescale system rep-
resenting the closed-loop dynamics is the same as themanifold for the
open-loop dynamics. Due to conditions (E), (F), and (G) Eq. (18) is in
the proper format to apply Tikhonov’s theorem ([1], Theorem 1).
Thus, via Tikhonov’s theorem, there exists a timescale separation
parameter 0 < ϵ� ≪ 1 and ∃ a time after the initial time t0 < t��ϵ��
such that ∀ϵ < ϵ� the difference between the closed-loop full-order
model and the closed-loop reduced slow model is on the order of ϵ�
after t�. □

Two corollaries follow directly from Theorem 2:
Corollary 1: If the conditions of Theorem 2 aremet and the closed-

loop reduced slow system is bounded, then the closed-loop full-order
system is also bounded.
Corollary 2: If the conditions of Theorem 2 are met and the

reference model is an asymptotically stable equilibrium of the
closed-loop reduced slow system with the initial conditions being
in the region of attraction for this equilibrium, then after time t� the
error between the reference model and the slow states of the closed-
loop full-order system is on the order of the timescale separation.
Succinctly the system is stable about the reference model in the sense
of Lyapunov.
In a general sense, Theorem 2 and its associated corollaries state

that an adaptive controller designed for the reduced slow model also
stabilizes the full-order model if the system can be rewritten such that
Tikonov’s theorem applies. Theorem 2 only applies to systems with
adaptive control in the reduced slow system. Applying a similar
derivation to adaptive control for the reduced fast model makes the
closed-loop system nonstandard, and, as a result, Tikonov’s theorem
does not apply. However, some researchers have managed to use a
similar process to prove boundedness for specific systems with
adaptive control on the reduced fast model (e.g., [5]). Generalizing
this procedure is the subject of ongoing research.
Notably, Tikhonov’s theorem, and by association Theorem 2,

implies stability in the sense of Lyapunov, but not convergence. This
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is interesting to consider in the common case of discounted actuator
dynamics. Recall from Theorem 2 that the bound on the slow state
tracking is of the order of the timescale separation parameter. This
means that speeding up the actuators (effectively increasing the
timescale separation by decreasing the timescale separation param-
eter) can improve tracking performance. This formalizes the common
wisdom that faster actuators are preferable.
There are many conditions in Theorem 2, but the most difficult to

satisfy is usually that the closed-loop manifold is an asymptotically
stable equilibrium of the fast states [condition (G)]. This gets back to
the heart of the problem discussed at the beginning of this section;
i.e., controlling a subset of the dynamics can drive the discounted
dynamics unstable. Sometimes, a Lyapunov function can be found
for the system that proves that the manifold is asymptotically stable
(see [26], Theorem 3.4.1 Statment iii). However, valid Lyapunov
functions can prove evasive for some systems.

C. [K]Control of Adaptive Multiple-Timescale Systems

ROAC requires that the discounted reduced model be stable.
Further, the difficulty of applying ROAC stems from proving that
the closed-loop manifold is an asymptotically stable equilibrium of
the fast dynamics. If some method could be found to ensure the
stability of the discounted dynamics without affecting the primary
reduced-order model, it could simplify and expand the applicability
of ROAC. For this purpose, KAMS is introduced. KAMS uses
multiple-timescale control techniques to control both the reduced
fast model and the reduced slow model simultaneously. Herein,
composite control will be used. The final control law takes the form
of Eq. (6), but some minor alterations are needed to account for the
additional adaptive signals:

u � us�x; θ̂s; xm; r� � uf�x; θ̂s; xm; r; ~z� (19)

Conceptually, the slow control stabilizes the reduced slow system and
the fast control stabilizes the reduced fast system. Thus KAMS
requires the design of two individual controllers. Each controller
can be adaptive or nonadaptive depending on where the model
uncertainties appear in the reduced-order models. If both controllers
are selected to be nonadaptive, then the control is reduced to typical
composite control. Just like composite control, it is requisite that the
fast control be zero when the fast states have reached their manifold.
If the fast control is selected to be nonadaptive, then Theorem 2 still
applies. Theorem 3 states this logic more formally.
Theorem 3: Let all of the conditions of Theorem 2 be satisfied

except condition (C). In place of condition (C), let condition (I) be the
control given inEq. (19),where the slowcontrolus is selected to be an

adaptive controller with parameters θ̂s, reference model xm, and
reference model input r. The fast control is selected to be a non-
adaptive control method. Then the conclusions of Theorem 2 and its
associated Corollaries 1 and 2 are still valid.
Proof: The only difference between Theorem 2 and Theorem 3 is

that the fast states appear in the control u � k�x; θ̂s; xm; r; z�. The
general procedure to prove Theorem 2 is to augment the slow states
with the new differential equations, substitute the control into all of
the differential equations, and show that the resulting differential
equations are still of the form required by Tikhonov’s theorem.
Because uf is nonadaptive there are no additional differential equa-

tions beyond those discussed in the proof of Theorem 2. Thus it is
sufficient to show that the control is only substituted into functions
that are already dependent upon the fast states (i.e., adding the fast
states to the control did not change the domain of the closed-loop
differential equations). CheckingEqs. (14) and (16) it can be seen that
this is the case. Therefore, Eq. (18) is still valid. The remainder of the
proof follows the proof of Theorem2. The logic of Corollaries 1 and 2
is not affected. □

Because KAMS specifically designs a controller for the dynam-
ics of both reduced systems, the assumption that one of the two
reduced subsystems is inherently stable is relaxed. Another benefit
of KAMS is that because the stability of the reduced fast subsystem
is asserted instead of assumed, it is easier to prove that the manifold

of the closed-loop system is an asymptotically stable equilibrium.
In fact, for some forms of nonlinear control, a valid Lyapunov
function could be directly implied by the control design. Saberi and
Khalil showed a method to find a valid range for the timescale
separation parameter under composite control [30]. In some cases,
the limits of this range are dependent upon the control gains. Thus,
the third benefit of KAMS is that the range of valid timescale
separation parameters can be larger (see Sec. IV for an example
of this). Saberi and Khalil’s technique can be expanded to apply to
KAMS. This is generalized with the following theorem. Just like
Sec. III.B, only the case of adaptive control in the slow states is
considered.
Theorem 4:Assume that all of the conditions of Theorem 3 apply.

Add the condition (J) on the true time-varying parameters θs �
qs�x; ts�, where θs evolves on the slow timescale. Let Vs�ex; ~θs�
and Vf� ~z� be candidate Lyapunov functions. Let 0 < α1, α2, β1, β2,
γ ∈ R be arbitrary. LetΨ�ex� andΦ� ~z� be arbitrary continuous scalar
functions such that Ψ�0� � Φ�0� � 0.
If the following conditions are met,

∂Vs

∂ex
�f�x; z0; us� −m�xm; r�� �

∂Vs

∂ ~θs
l�x; xm� − �qs�x; ts�

≤ −α1Ψ2�ex� (20a)

∂Vf

∂ ~z
g�x; z; u; 0� − �h�x; us� ≤ −α2Φ2� ~z� (20b)

∂Vs

∂ex
�f�x; z; u� − f�x; z0; us�� ≤ β1Ψ�ex�Φ� ~z� (20c)

∂Vf

∂ ~z
�g�x; z; u; ϵ� − g�x;z; u; 0�� ≤ ϵβ2Ψ�ex�Φ� ~z� � ϵγΦ2� ~z�

(20d)

ϵ <
α1α2

γα1 � β1β2
(20e)

then the full-order closed-loop system is stable about the reference
model in the sense of Lyapunov.
Proof: Define a composite candidate Lyapunov function

V � �1 − d�Vs�ex; ~θs� � dVf� ~z� (21)

where 0 < d < 1. Differentiate with respect to slow time ts:

�V � �1 − d� �Vs�ex; ~θs� � d �Vf� ~z� (22)

Note that because ts and tf are all proportional by positive scalars,

sign� �V� � sign� �V�. In other words, proving stability in the slow time
is equivalent to proving stability in the other timescales. Using the
chain rule

�V � �1 − d� ∂Vs

∂ex
�ex �

∂Vs

∂ ~θs
�~θs � d

∂Vf

∂ ~z
�z (23)

Substituting the definitions of the errors from Eqs. (8) and (10),

�V � �1 − d� ∂Vs

∂ex
� �x − �xm� �

∂Vs

∂ ~θs
�̂
θs − �θs � d

∂Vf

∂ ~z
� �z − �z0�

(24)

Using ϵ��⋅ � � � �⋅�

�V � �1 − d� ∂Vs

∂ex
� �x − �xm� �

∂Vs

∂ ~θs

�̂
θs − �θs � d

ϵ

∂Vf

∂ ~z
� �z − �z0�

(25)
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The manifold z0 � h�x; u� is the trajectory the fast states system

converges to as time goes to infinity. By definition of composite

control, uf � 0 when z � z0. Therefore the manifold can be rewrit-

ten as z0 � h�x; us�. Using the definitions given by conditions (A),

(B), and (D) in Theorem 2 and (J) in Theorem 4,

�V � �1 − d� ∂Vs

∂ex
�f�x; z;u� −m�xm; r��

� ∂Vs

∂ ~θs
l�x; xm� − �qs�x; ts�

� d

ϵ

∂Vf

∂ ~z
g�x; z; u; ϵ� − �h�x;us� (26)

Add and subtract ��1−d��∂Vs∕∂ex�f�x;z0;us�� �d∕ϵ��∂Vf∕∂ ~z�
g�x;z;u;0��

�V � �1 − d� ∂Vs

∂ex
�f�x; z0; us� −m�xm; r�� �

∂Vs

∂ ~θs
l�x; xm�

− �qs�x; ts� � ∂Vs

∂ex
�f�x; z; u� − f�x; z0; us��

� d

ϵ

∂Vf

∂ ~z
g�x; z; u; 0� − �h�x; us�

� ∂Vf

∂ ~z
�g�x; z; u; ϵ� − g�x; z;u; 0�� (27)

Via the conditions in Eqs. (20a–20d),

�V ≤ �1 − d� −α1Ψ2�ex� � β1Ψ�ex�Φ� ~z�

� d

ϵ
−α2Φ2� ~z� � ϵβ2Ψ�ex�Φ� ~z� � ϵγΦ2� ~z� (28)

Some algebra gives

�V≤− Ψ�ex�⊤ Φ� ~z�⊤
�1−d�α1 −1

2
��1−d�β1�dβ2�

−1
2
��1−d�β1�dβ2� d

ϵα2−dγ

×
Ψ�ex�
Φ� ~z�

(29)

The full-order closed-loop system is asymptotically stable if the

matrix in Eq. (29) is positive definite. Sylvester’s criterion [31] says

that this matrix is positive definite if and only if α1 > 0 (guaranteed

by definition) and

0 < �1 − d�α1
d

ϵ
α2 − dγ −

1

4
��1 − d�β1 � dβ2�2 (30)

Solving for ϵ

ϵ <
α1α2

γα1 � 1
4d�1−d� ��1 − d�β1 � dβ2�2

(31)

d is any arbitrary real value between zero and one. An optimization

can give us the value of d that allows the largest valid range for the

timescale separation parameter. The solution to this optimization

problem is given by [1] (p. 42). The upper limit on the valid range

for the timescale separation parameter is

ϵ� � α1α2
γα1 � β1β2

(32)

By the condition in Eq. (20e), ϵ < ϵ�. Thus, by Lyapunov’s second

method, the system is stable about the referencemodel in the sense of

Lyapunov. □

The conclusions of Theorem 4 are equivalent to Theorem 3
(Lyapunov stability). However, Theorem 4 offers a few unique bene-
fits. First, Theorem 4 gives a bound on the timescale separation
parameter. This gives a measure of the robustness of the control to
timescale separation uncertainties. Second, the conditions of
Theorem 4 are more practical. Note that the condition in Eq. (20b) is
the same condition that is difficult to address in Theorems 2 and 3;
namely, the manifold of the closed-loop model is an asymptotically
stable equilibrium of the fast states. However, in the case of Theorem 4
there is a simpleway to verify that this condition ismet. A third benefit
is that, in some cases, Barbalat’s lemma [32] can be used to show
convergence. The following corollary to Theorem 4 is also notable.
Corollary 3: Theorem 4 also applies to ROAC.
Proof: ROAC is equivalent to KAMS when the fast control is

selected to be uf � 0. Thus, Theorem 4 can be used to find a valid
range for the timescale separation parameter of a system under
ROAC. □

The benefits of Theorem 4 come with a cost. First, a Lyapunov
function must be found such that the conditions are satisfied. Finding
a Lyapunov function can be particularly challenging when consid-
eration is given to the time rate of change of the manifold �h�x;us� in
the condition fromEq. (20b). This challenge is not unique to adaptive
multiple-timescale control. Saberi and Khalil encountered this when
proposing their nonadaptive solution. They proposed adding an addi-
tional condition constraining �∂Vf∕∂ ~z��∂h∕∂x�f�x; z; u�. Sabiri and
Khalil also considered systems with fast Lyapunov functions that are
also dependent upon the slow states. These alterations could also be
applied to adaptive systems. See Sabiri and Khalil’s work for more
details [30,33].

IV. Example

Adaptive control has a long history of application to aerospace
systems. For example, adaptive control has been applied to an F-16
[34], an F/A-18A [35], and an uncrewed air system (UAS) [36].
Multiple-timescale control has also been applied to aerospace sys-
tems. For example, multiple-timescale control has been applied to a
generic fixed-wing aircraft [37], an F-16A [6], and trajectory opti-
mization [38]. For more examples, see [8]. However, relatively little
research has addressed the effects of timescales on adaptive control
for aerospace systems.
Consider the linearized second-order short-period longitudinal

dynamics of a fixed-wing aircraft. The elevator actuator dynamics
can also be represented as a second-order system [39,40]. In this
paper, it is assumed that the elevator dynamics are significantly faster
than the short-period dynamics. This system can be represented with
the following set of equations:

�x � Axx� BxΛδe (33a)

ϵ �z � Azz� Bzδe;c (33b)

The variables Ax, Az ∈ R2×2 and Bx, Bz ∈ R2×1 are system param-
eters, with Ax being uncertain. The variable Λ ∈ R� represents the
control effectiveness of δe and is also uncertain. The state vectors x
and z are defined as x ≜ � α q �T and z ≜ � δe �δe �T . The variable q
is the body-axis pitch rate and α is the angle of attack. The variable δe
is the elevator deflection and δe;c is the commanded elevator deflec-

tion. The state and control variables are taken to be zero at trim.
Finally, by definition, let the first column of Az is equal to −Bz. This
implies that the DC gain for the fast actuator dynamics is one and that

−A−1
z Bz ≜ � 1 0 �T . This is the full-order multiple-timescale system.

Following the procedure in Sec. II, the reduced slow model is

�x � Axx� BxΛδe (34a)

z0 � � δe;c 0 �T (34b)

The reduced fast model is

�x � 0 (35a)
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�z � Azz� Bzδe;c (35b)

The subsystems are now used to develop control laws. The control

objective will be for the angle of attack α to track a reference model

with a sinusoidal input.

A. Control Synthesis

In this section, a FOAC, a ROAC, and aKAMS adaptive controller

are designed. The reference model is Eq. (7). This will be a second-

order reference model for ROAC and KAMS, but a fourth-order

reference model for FOAC (because FOAC considers the full-order

system). For the sake of demonstration, a simple model reference

adaptive control (MRAC) law is used within the frameworks of

FOAC, ROAC, and KAMS. More details can be found in [41]

(pp. 111–116).

1. Full-Order Adaptive Control

As described above, ϵ can be moved to the right side of Eq. (33b),

and x and z can be concatenated into a single state vector. This yields
the full-order block-matrix system

�x

�z
�

Ax �Bx 02×1 �
02×2 Az

1
ϵ

x

z
�

02×1

Bz
1
ϵ

δe;c (36)

The notation 0i×j indicates an i × j-dimensional matrix of zeros. An

adaptive controller can be selected from a wide class of adaptive

algorithms for linear systems. In this case, traditional MRAC from

[41] (pp. 111–116) is selected

δe;c � K̂xx� K̂zz� K̂rr (37a)

�̂
Kx

�̂
Kz

T � −Γxz

x

z
eTx eTz Px

02×1

Bz
1
ϵ

(37b)

�̂
KT

r � −Γrr eTx eTz Px

02×1

Bz
1
ϵ

(37c)

where Γxz, Γr ∈ R4×4 are positive definite adaptation rate gain matri-

ces that must be tuned. The variables K̂x, K̂z ∈ R1×2 and K̂r ∈ R are

adapting control gains. The variable Px ∈ R4×4 is also a positive

definite matrix that is the solution to the Lyapunov equation

PxAm � AT
mPx � −Qx, where Qx ∈ R4×4 is an arbitrary positive

definite symmetric matrix. For the following simulation, Qx is

selected to be the identity matrix. Notably the timescale separation

parameter is explicitly used in the adaptation laws. However, if it is

unknown, then ϵ can be absorbed into the adaptation rate gains Γxz

and Γr. By Theorem 1, the error eα ≜ α − αm converges to zero and

the system is bounded. Further, again by Theorem 1, all timescale

separation parameters are valid for this system under FOAC.

2. Reduced-Order Adaptive Control

For ROAC, only the reduced slow subsystem is considered, and it

is assumed that the fast states are always on their manifold (i.e.,

δe � δe;c). The reduced slow subsystem is therefore

�x � Axx� BxΛδe;c (38)

An adaptive controller can be selected from a wide class of adaptive

algorithms for linear systems. In this case, traditional MRAC from

[41] (pp. 111–116) is used again:

δe;c � K̂xx� K̂rr (39a)

�̂
KT

x � −Γxxe
T
x PxBx (39b)

�̂
KT

r � −Γrre
T
x PxBx (39c)

where Γxz, Γr ∈ R2×2 are positive definite adaptation rate gain matri-
ces that must be tuned. To ensure that dimensions are consistent, Px,

Qx ∈ R2×2, but these matrices serve the same role and are subject to
the same constraints (e.g., positive definite) as they are with FOAC.
By Theorem 2 and Corollary 2, there exists a set of timescale
separation parameters such that the closed-loop tracking error eα is
bounded by a bound on the order of the timescale separation param-
eter. The set of valid timescale separation parameters for ROAC is
discussed in the next section. However, the following Lyapunov
function from [41] (pp. 111–116) is useful:

Vs � eTx Pxex � trace ~KxΓ−1
x

~KT
x � trace ~KrΓ−1

r
~KT
r (40)

Again from [41] (pp. 111–116) it is known that

�Vs � −eTxQxex (41)

≤ −λmin�Qx�kexk22 (42)

where λmin�⋅� is the smallest eigenvalue of �⋅�.

3. KAMS

The adaptive controller designed in the previous section can be
extended to be a KAMS controller by selecting the slow control δe;c;s
to be the input from ROAC [Eq. (39)] and designing an additional
controller for the fast states. A simple nonadapting linear control law
is used for this purpose because there is no uncertainty in the reduced
fast subsystem. The full-order control law can then be found using
the definition of composite control δe;c � δe;c;s � δe;c;f. Recall that
z0 ≜ � δe;c;s 0 �T . This is consistent with Eq. (34b) because by

definition δe;c;f � 0 when z � z0. The reduced fast subsystem can

be written as

�z � Az�z − z0� � Bzδe;c;f (43)

because the first column of Az is equal to −Bz. The fast control is
selected to be δe;c;f � Kz�z − z0�. Note thatKz is a constant control

gain that does not adapt. It must be tuned (this is made easier because
Az andBz are not uncertain). LetKz be chosen such thatAz � BzKz is
Hurwitz. In summary, the full-order control law is

δe;c � K̂xx� Kz�z − z0� � K̂rr (44a)

�̂
KT

x � −Γxxe
T
x PxBx (44b)

�̂
KT

r � −Γrre
T
x PxBx (44c)

Consider the following candidate Lyapunov function for the reduced
fast system in Eq. (35):

Vf � ~zTPz ~z (45)

The variable Pz ∈ R2×2 is the positive definite solution to the Lya-

punov function Pz�Az � BzKz� � �Az � BzKz�TPz � −Qz, where

Qz ∈ R2×2 is an arbitrary positive definite symmetric matrix. Differ-
entiating gives

�Vf � − ~zTQz ~z (46)

≤ −λmin�Qz�k ~zk22 (47)

where it has been assumed that �δe;c;s � 0. This is a good assumption

because the slow input should vary on the slow timescale, not the fast
timescale. However, it does decrease the accuracy of the bounds on
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the timescale separation parameter. By Theorem 3 there exists a set of
timescale separation parameters such that the closed-loop tracking
error eα is bounded by a bound on the order of the timescale
separation parameter. A set of valid timescale separation parameters
is found by applying Theorem 4. Let Ψ�ex� � kexk2 and let
Φ� ~z� � k ~zk2.
Condition in Eq. (20a): By Eq. (42),

α1 � λmin�Qx� (48)

Condition in Eq. (20b): By Eq. (47),

α2 � λmin�Qz� (49)

Condition in Eq. (20c): Substituting Eq. (33a), Eq. (34a), and the
partial of Eq. (40) into Eq. (20c)gives

2eTx Px Axx� BxΛδe − Axx� BxΛδe;c ≤ β1kexk2k ~zk2 (50)

Simplifying gives

2eTx PxBxΛ�δe − δe;c� ≤ β1kexk2k ~zk2 (51)

Using δe;c;f � 0 when z � z0 and ~z � z − z0 and taking the two-
norm gives

2kexk2σmax�PxBxΛ�k ~zk2 ≤ β1kexk2k ~zk2 (52)

where σmax�⋅� is the maximum singular value of �⋅�. Therefore

β1 � 2σmax�PxBxΛ� (53)

Condition in Eq. (20d): Substituting Eq. (33b), Eq. (35b), and the
partial of Eq. (45) Eq. (20d) gives

2 ~zTPx Azz� Bzδe;c − Azz� Bzδe;c

≤ ϵβ2kexk2k ~zk2 � ϵγk ~zk22 (54)

Simplifying

0 ≤ ϵβ2kexk2k ~zk2 � ϵγk ~zk22 (55)

By definition, β2 ≠ 0 and γ ≠ 0; therefore, let β2 and γ be any
arbitrary positive constant:

β2 ∈ R� (56a)

γ ∈ R� (56b)

Condition in Eq. (20e): Finally, the bound on the timescale sepa-
ration parameter is obtained from Eq. (20e). Substituting the results
from Eqs. (48), (49), (53), and (56),

ϵ <
λmin�Qx�λmin�Qz�

γλmin�Qx� � 2σmax�PxBxΛ�β2
(57)

All components of Eq. (57) are positive. Therefore, because β2 and γ
are arbitrary, the following conclusion can be drawn:

∀0 < ϵ≪ 1 ∃γ;β2 ∈ R� s:t: ϵ <
λmin�Qx�λmin�Qz�

γλmin�Qx� � 2σmax�PxBxΛ�β2
(58)

By Theorem 4, the closed-loop system under KAMS is stable in the

sense of Lyapunov for all values of the timescale separation
parameter.
Now consider the range of valid timescale separation parameters

for ROAC. KAMS is equivalent to ROAC when Kz � 0 (i.e., the
fast control is always zero). Thus, there are two cases. First, if Az

is Hurwitz, then the Lyapunov equation Pz�Az � BzKz� �
�Az � BzKz�TPz � −Qz holds when Kz � 0. However, if Az is not

Hurwitz, then there is no solution to the Lyapunov equation. Thus the

boundedness of the closed-loop system cannot be guaranteed by
Theorem 4. The manifold is not an asymptotically stable equilibrium

of the fast states, so Theorem 2 is also invalid. Intuitively, ROAC
cannot account for the neglected unstable fast dynamics.

4. Summary of Control Laws

The adaptive control equations for FOAC,ROAC, andKAMS are

summarized and compared in Table 1. This allows the three meth-

ods to be directly compared. The most notable difference between
FOAC and ROAC is that FOAC is a higher-order method. This

makes sense because model reduction is an important step in ROAC

and KAMS. Thus ROAC and KAMS have a second-order reference
model, fewer adaption laws, and a simpler control law. Another

notable difference is that ROAC cannot guarantee the stability of the
system when Az is non-Hurwitz (i.e., the fast dynamics are unsta-

ble). ROAC assumes that the fast dynamics are stable. Finally,

Table 1 makes it clear that KAMS is an extension of ROAC. The
only difference between the two is the addition of a fast control term

in the control law. This one change allows the fast dynamics to be

inherently unstable without destabilizing the closed-loop system.
Thus KAMS is found to be simpler than FOAC and more capable

than ROAC.

B. Numerical Results

The performance of FOAC, ROAC, and KAMS is compared for

controlling the pitch dynamics of a Boeing 747-100/200. The Boeing

747-100/200 system from [42] (Appendix BAirplane J) is linearized
about trimduring an approach for landing (0 ft altitude, 131 knots true

airspeed, 8.5° angle of attack, and a standard atmosphere). The

system parameters for the actuator dynamics are not published, but
the elevator rate saturates at �δe � 37° s−1 [43]. Therefore, a second-
order systemwith a natural frequency of 5.5 rad/s and a damping ratio

Table 1 Comparison of the three different control methodologies applied to Eq. (33)

Aspect of Method FOAC ROAC KAMS

Model 4th order
�xm � Amxm � Bmr

2nd order
�xm � Amxm � Bmr

2nd order
�xm � Amxm � Bmr

Adaptive law

�̂
KT

x

�̂
KT

z

� −Γxz

x

z

ex

ez

T

Px

02×1

Bz�1∕ϵ�
�̂
KT

r � −Γr r
ex

ez

T

Px

02×1

Bz�1∕ϵ�

�̂
KT

x � −Γxxe
T
x PxBx

�̂
KT

r � −Γrre
T
x PxBx

�̂
KT

x � −Γxxe
T
x PxBx

�̂
KT

r � −Γrre
T
x PxBx

Control law δe;c � K̂xx� K̂zz� K̂rr δe;c � K̂xx� K̂rr δe;c � K̂xx� Kz�z − z0� � K̂rr

Stability Lyapunov sense stable Lyapunov sense stable Lyapunov sense stable

Valid ϵ ∀ϵ ∈ �0; 1� Az Hurwitz
⇒ ∀ϵ ∈ �0; 1� ∀ϵ ∈ �0; 1�
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of 0.707 is chosen so that the elevator has appropriate bandwidth but

does not saturate. The adapting parameters are initialized at an

estimate of the true value using the matching condition (see [41],

pp. 111–116]). Uncertainty is added to the system parameters before

calculating the true value. Uncertainty is created by sampling the

estimated parameter values from a normal distributionwith amean of

the true value and a standard deviation of 20% of the true value. The

closed-loop poles for the slow state’s reference model are selected to

be real stable poles at−1 and−1.5. For FOAC, the reference model’s

fast poles are placed at −14 and −15. The adaptation rate gains Γx,

a) Time history of the angle-of-attack b) Time history of the body axis pitch rate

c) Time history of the elevator deflection d) Time history of the elevator rate

Fig. 1 Time history of system states with high adaptation rate gains (105).

a) Time history of the angle-of-attack adapting gain b) Time history of the body axis pitch rate adapting gain

c) Time history of the elevator deflection adapting gain d) Time history of the elevator rate adapting gain

e) Time history of the reference model input adapting gain

Fig. 2 Time history of the control gains’ error with high adaptation rate gains (105).
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Γxz, and Γr are each tuned for optimal performance. The diagonal

entries of each gain are found to be 105. The adaptation rate gains for
each method (FOAC, ROAC, and KAMS) are kept equal to allow for

direct comparison. The fast subsystem’s control gain for KAMS (Kz)

is found by using Ackermann’s formula to place the poles of the fast

subsystem at −14 and −15 (identical to FOAC). The system and

reference models are initialized at trim. The reference model input is

chosen to be r � sin�ts� degrees angle of attack.
Figure 1a shows the time history of the angle of attack, Fig. 1b

shows the time history of the body axis pitch rate, Fig. 1c shows the

a) Time history of the angle-of-attack b) Time history of the body axis pitch rate

c) Time history of the elevator deflection d) Time history of the elevator rate

Fig. 3 Time history of system states with reduced adaptation rate gains (1).

e) Time history of the reference model input adapting gain

a) Time history of the angle-of-attack adapting gain

c) Time history of the elevator deflection adapting gain d) Time history of the elevator rate adapting gain

b) Time history of the body axis pitch rate adapting gain

Fig. 4 Time history of the control gains’ error with reduced adaptation rate gains (1).
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time history of the elevator deflection, and Fig. 1d shows the time

history of the elevator rate. The adaptation gain time histories

are shown in Fig. 2. All three multiple-timescale adaptive control

methodologies—FOAC, ROAC, and KAMS—are shown for com-

parison, and all converge to the reference model. KAMS drives the

elevator deflection to the manifold quicker and with less overshoot

than the othermethods because the fast control shapes the response of

the fast states. Note that none of the control methods drives the

elevator rate to the manifold. This is expected because the time-

varying reference model makes this manifold physically impossible

(the fast subsystem is underactuated). However, the control objective

is slow state tracking, and so this is acceptable. Note that transient

oscillations are visible in the elevator deflection rate under ROAC

because it assumes that the fast dynamics are infinitely fast. FOAC

demonstrates the best angle-of-attack tracking performance, but

experiences high-frequency transient oscillations that are particularly

evident in the time histories of the elevator deflection manifold and

the adapting gains. This is a known and well-studied problem related

to the system’s timescales [44,45]. It is caused by high adaptation rate

gains. In the previous example the adaptation rate gains for each

controller are kept equal to allow for direct comparison. If the

adaptation rate gains are reduced, the angle-of-attack tracking

performance is degraded but the high-frequency oscillations under

FOAC disappear. These results are visible in Figs. 3 and 4. The

adaptation rate gains used for this second example are all identity.

As a final test case, consider Figs. 5 and 6. These plots show what

happens when the plant’s fast dynamics are unstable. This effect is

achieved by setting the damping ratio for the actuator dynamics equal

a) Time history of the angle-of-attack b) Time history of the body axis pitch rate

c) Time history of the elevator deflection d) Time history of the elevator rate

Fig. 5 Time history of system states with unstable fast plant dynamics.

a) Time history of the angle-of-attack adapting gain b) Time history of the body axis pitch rate adapting gain

c) Time history of the elevator deflection adapting gain d) Time history of the elevator rate adapting gain

e) Time history of the reference model input adapting gain

Fig. 6 Time history of the control gains’ error with unstable fast plant dynamics.
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to −0.707. As predicted by the theoretical analysis in this paper,
FOAC and KAMS can account for this, and their performance is
relatively unaffected. On the other hand, the closed-loop system is
dynamically unstable under ROAC. The adaptation rate gains for this
final example are left at their best-case values. Low adaptation rate
gains are used for ROAC in an attempt to decrease the rate of
divergence for clarity in the plots. In summary, the diagonals of the

adaptation rate gains are 1 for FOAC and ROAC, but 105 for KAMS.

V. Conclusions

This paper presented and developed three different adaptive con-
trol methodologies for multiple-timescale systems. FOAC uses tradi-
tional adaptive control on the full-order model. ROAC uses adaptive
control on only one of the reduced-order models. KAMS uses
adaptive control on both reduced-order models and then fuses the
result. If uncertainties do not appear in one of the reduced-order
models, then KAMS can also use a nonadaptive method on that
reduced-order model. All three methodologies are shown to be
Lyapunov sense stable under the theorems and associated conditions
that are proven in this paper. An example with numerical results is
given to demonstrate and compare all three methods. Based upon the
theoretical and numerical results presented in the paper, the following
conclusions are made.
Adaptive control can be sensitive to timescale effects. and so a

method of adaptive control tailored specifically for multiple-
timescale systems is needed. FOAC, ROAC, and KAMS are all valid
adaptive multiple-timescale control methodologies. FOAC is the
most straightforward because there is little to no additional work to
reformat the plant, but it can be particularly sensitive to uncertainties
in the timescale separation parameter and other timescale-related
effects. ROAC allows the designer to take advantage of model
reduction, which simplifies the control synthesis, but requires the
discounted dynamics to be asymptotically stable. KAMS also takes
advantage of model reduction but does not require the fast dynamics
to be stable. Numerical results demonstrated that KAMS can bemore
robust to timescale effects than FOAC because it did not experience
high-frequency oscillations at high adaptation rate gains. KAMS also
demonstrated better fast state tracking performance than both of the
other methods. This is because each reduced-order model is stabi-
lized separately. For slow state tracking, KAMS performed slightly
worse than FOAC, but slightly better than ROAC. KAMS tends to
have a more complicated design process because two separate con-
trollers must be designed. While all three methods are valid, KAMS
is judged to provide the best balance between performance and
robustness.
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