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ABSTRACT
This paper develops a theory of output feedback control for a class of nonlinear, nonstandard two-time-
scale systems using a controller and a state observer with guaranteed closed-loop stability. Using insights
from geometric singular perturbation theory, a sequential controller is designed over two time-scales. For
different choices ofmeasurements, Lyapunov-based observer designs are investigated. Both the controller
and the observer are designed to guarantee Lyapunov stability of the lower-order reduced subsystems.
Using an extension of the composite Lyapunov analysis, it is proved that the full-order nonlinear system
with the controller and the observer remains globally asymptotically stable up to a bound of the time-
scale separation parameter. In addition, the composite Lyapunov analysis yields sufficient conditions as
guidelines to select the gains. The approach and analysis are demonstrated on a nonlinear two-time-scale
system for which the reduced subsystems are linear, but the composite Lyapunov analysis handles the
nonlinearity present in the full-order dynamics.
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1. Introduction

Systems with dynamics evolving in distinct slow and fast time-
scales include aircraft (Khalil & Chen, 1990), robotic manip-
ulators (Tavasoli, Eghtesad, & Jafarian, 2009), electrical power
systems (Sauer, 2011), chemical reactions (Mélykúti, Hespanha,
& Khammash, 2014), production planning in manufacturing
(Soner, 1993), and so on. The mathematical model of a two-
time-scale system involves a small perturbation parameter ε

such that 0 < ε << 1. This parameter ε signifies how well-
separated the two time-scales are. It may be either a function
of the system parameters, e.g. in spring-mass-damper, or intro-
duced artificially to distinguish between the slow and the fast
states, e.g. in aircraft. Setting this parameter to zero converts the
fast dynamics from a set of differential equations to a set of alge-
braic equations, indicating a singularity in the model. From a
physical standpoint, the singularity is due to infinite time-scale
separation, i.e. the fast dynamics being infinitely fast. Using this
concept, results from the geometric singular perturbation the-
ory (Fenichel, 1979) can be used to design controllers for two-
time-scale systems. Controller design using this approach has
a few major benefits. First, this results in a nonlinear controller
for a nonlinear system; no linear approximation or gain schedul-
ing is involved anywhere in the development. Second, the slow
and the fast dynamics are not treated as two completely isolated
subsystems; the control design considers the coupling between
them in different time-scales. Third, lower-order reduced slow
and fast subsystems use a physical insight of the dynamics and
at the same time make the control design mathematically eas-
ier. According to the geometric singular perturbation theory
(Fenichel, 1979), the behaviour of the full-order system can
be approximated by the slow subsystem, provided that the fast
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states can be stabilised on an equilibrium manifold. The fast
subsystem describes how the fast states evolve from their ini-
tial conditions to their equilibrium trajectory or the manifold.
The slow subsystem describes how the slow states evolve from
their initial conditions while the fast states stay on the man-
ifold (Khalil, 2002). Even though the controller is designed
on reduced subsystems, the stability of the full-order nonlin-
ear system can be proven using composite Lyapunov analysis
(Khalil, 2002). Fourth, the exact value of the time-scale separa-
tion parameter εmaynot be known formany systems, especially
the ones forwhich ε is artificially introduced. For static compen-
sation which does not require differentiation with respect to the
fast time-scale, the controller design does not require the knowl-
edge of ε, and it still works within a bound of ε established by
the composite Lyapunov analysis.

In the literature, the singular perturbation approach has
been used in model order reduction (Grujić, 1979; Liu
& Anderson, 1989), control of linear discrete-time systems
(Rajagopalan & Naidu, 1980), optimal control problems (Baga-
giolo & Bardi, 1998; Forcadel & Rao, 2014; Vigodner, 1997),
and so on. In addition, insights from geometric singular per-
turbation theory have been used for slow state tracking as well
as simultaneous slow and fast state tracking of two-time-scale
systems (Narang-Siddarth&Valasek, 2014). For slow state regu-
lation or tracking of a two-time-scale system, there is no desired
reference for the fast states. Following Tikhonov’s theorem
(Kokotovic, Khalil, & O’Reilly, 1986), the control should ensure
that the fast states can be stabilised on any suitable equilibrium
manifold. A unique equilibrium manifold for the fast states can
be found for standard singularly perturbed systems. In practice,
however, the singularly perturbed models in many important
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applications are nonstandard. For nonstandard systems, there is
no uniquemanifold of the fast states; themanifold is to be either
approximated or specified. The method of modified composite
control approximates the manifold. It is a two-stage design pro-
cess in which the control input is considered as a sum of slow
and fast controls. Slow and fast controls are chosen using any
design method based on the reduced subsystems. The stability
of the closed-loop is then determined using Lyapunov analysis.
This technique is applied on a generic two-degree-of-freedom
nonlinear model as well as a nonlinear six-degree-of-freedom
F/A-18A Hornet (Narang-Siddarth & Valasek, 2011a, 2011b).
However, the approximation of themanifold often becomes dif-
ficult and can be avoided by the method of sequential control.
The idea behind sequential control is to use feedback to convert
a nonstandard system in the open-loop to a standard system in
the closed-loop. It is a Lyapunov design method in which the
manifold of the fast state is specified as an intermediate con-
trol variable. The manifold is selected such that the reduced
slow subsystem is Lyapunov-stable, followed by the selection
of the control law such that the reduced fast subsystem is also
Lyapunov-stable. Subsequently the composite Lyapunov anal-
ysis (Khalil, 2002) gives an upper bound of ε, denoted ε∗, up
to which the full-order system is Lyapunov-stable. This method
has been extended to four-time-scales such that slow and fast
actuator dynamics can be included. A four-time-scale version
of the sequential control method was recently applied on a
nonlinear six-degree-of-freedom aircraft model (Saha, Valasek,
Famularo, & Reza, 2018). This work assumed a deterministic
model. A theory to address parametric and state-dependent
uncertainties in the fast dynamics was developed in a later work
of the authors (Saha, Valasek, & Reza, 2018).While these papers
dealt with regulation or tracking of only the slow states using the
sequential approach, another challenging problemof simultane-
ous slow and fast state tracking was addressed using a two-stage
design method (Saha & Valasek, 2017).

A major limitation of most control techniques for nonlin-
ear, nonstandard systemswith two time-scales is the assumption
of full-state feedback. In practice, it is not always possible to
measure all of the states, but often some of the states are mea-
surable. Sometimes linear combinations of the states are easier
to measure than the individual states themselves. To address
this, a theory of output feedback control is needed. In the lit-
erature, there are some works on dynamic output feedback
control of multiple-time-scale systems using observers. For a
robotic manipulator, a linear observer for the fast state was
proposed in a few works (Ashayeri, Eghtesad, Farid, & Sha-
bani, 2007; Tavasoli et al., 2009). For a discrete linear two-
time-scale system, an output feedback control scheme was pro-
posed based on genetic algorithm (Pan & Chen, 2009; Pan,
Pan, & Tsai, 2011). A Linear Quadratic Gaussian (LQG) con-
troller in two time-scales was developed for a missile autopi-
lot (Moghaddam & Zarabadipour, 2012). Observer-based con-
trollers were designed for linear time-delay systems with two-
time-scale dynamics (Chiou, 2013). A differentwork considered
observer design for linear two-time-scale systems with Lips-
chitz constraint (Wang & Liu, 2015). Another work (Hoffmann
& Sanders, 1998) presented a two-time-scale observer-based
torque control of a induction machine. In all of the above
works, the observer design was based on the system dynamics

being linear or linearised. For a nonlinear model of an induc-
tion motor with two slow and two fast states, Mezouar, Fellah,
and Hadjeri (2007, 2008) developed a two-time-scale adaptive
sliding mode observer to supplement a regular sliding mode
controller in the feedback loop. For a nonlinear two-time-scale
spring-mass-damper with one slow and one fast states, both
of the controller and the observer were designed in two time-
scales (Saha & Valasek, 2016a). This observer-based feedback
design was an extension of the method of sequential control
(Narang-Siddarth & Valasek, 2014) with the potential to work
for nonstandard systems. The Lyapunov design of observers in
two time-scales led to guaranteed stability of the corresponding
reduced subsystems. A total of six cases – two different cases
of dynamics and three difference cases of measurement – were
described, and results were presented for four of them. The cases
of dynamics were (a) high damping and (b) high stiffness. The
cases of measurement were (a) only the slow state measured,
(b) only the fast state measured, (c) a linear combination of the
states measured. For one of the four cases a subsequent work
of the authors (Saha & Valasek, 2016b) extended the procedure
to a nonlinear spring-mass-damper with multiple slow and fast
states.

While the authors’ previous works (Saha & Valasek, 2016a,
2016b) did introduce observer-based output feedback for non-
linear, nonstandard, two-time-scale systems, several aspects of
the theory were not fully developed. Stability analysis of the
full-order system under output feedback is an important open
problem. Ref. (Saha & Valasek, 2016a) shows Lyapunov sta-
bility of the individual reduced subsystems. These lower-order
subsystems are constructed on the assumption of infinite time-
scale separation.However, time-scale separation for the original
full-order system is finite. Therefore, it must be investigated if
the controller and the observer designed on the reduced sub-
systems will preserve the stability of the full-order system. For
full-state feedback, it is well-established that the controller can
accommodate finite time-scale separation, i.e. the parameter
ε taking on values up to a certain ε∗. This ε∗ is a function
of the system parameters and gains, and it can be determined
from the composite Lyapunov analysis. However, for output
feedback an equivalent upper bound ε∗∗ was not available in
the closed form. Ref. (Saha & Valasek, 2016b) shows a way
to extend the composite Lyapunov analysis for output feed-
back, but the bound of time-scale separation is determined
numerically by plotting all the eigenvalues of a matrix. This
numerical approach misses an important insight: it is not pos-
sible to understand which gain or system parameter changes
the stability bound, and by how much. This requires a more
rigorous analytical treatment of the composite Lyapunov anal-
ysis for output feedback. Moreover, the authors’ previous work
(Saha & Valasek, 2016a) considers a specific type of nonlinear-
ity, and the exact expression of the nonlinear function is used
by both the controller and the observer. It is to be investigated
if this method can address a more generic family of nonlin-
ear functions with only a few known properties. In addition,
in the previous work, it was not possible to develop Lyapunov-
based observers for all the cases of measurement. In particular,
the case of only the fast state being measured was shown to
be mathematically intractable for observer design. It is pos-
sible that for a more generic system there may be a way to



INTERNATIONAL JOURNAL OF CONTROL 3

design an observer when the measurement is only the fast
state.

The current work addresses the issues discussed above by
developing a theory of output feedback control for a more
generic class of nonlinear, nonstandard, two-time-scale systems.
The class of systems considered in this paper can represent
mechanical systems with displacement being the slow state and
velocity being the fast state. The fast dynamics are comprised
of three parts: one part linear in the states, one part nonlinear
in the states, and one part being the control input. The overall
nonlinearity is a sum of two terms, and each term is a product of
two nonlinear functions: a sector-bounded nonlinear function
in one state, and a bounded in magnitude nonlinear function in
another state. The sector-bounded function can capture non-
linear behaviours which may become large as the state becomes
large. On the other hand, the nonlinear function bounded in
magnitude can describe hard nonlinearities such as saturation.
The fast dynamics are such that the nonlinearity is present in the
full-order system but not present in the reduced subsystems.

This paper makes a major contribution for this new class
of nonlinear systems. Output feedback controllers using state
observers are developed with guarantees of stability for all of the
three cases: (i) only the slow state is measured, (ii) only the fast
state is measured, and (iii) a linear combination of the states is
measured. For each case the controller and the observer struc-
tures are selected using Lyapunov design on the lower-order
reduced subsystems. The gains in the control law and observer
dynamics are dictated by the bounds of the nonlinear functions.
The observer operates in the fast time-scale, and estimates one
or both of the states depending on the measurement. An exten-
sion of the existing composite Lyapunov analysis is performed
for all three cases. For each case this analysis produces a closed-
form upper bound ε∗∗ of time-scale separation ε guaranteeing
global asymptotic stability. In addition, this analysis also yields
constraints on the gains so they can be selected for guaranteed
stability.

This paper is organised as follows. The two-time-scale non-
linear model is described in Section 2. The control law devel-
opment and the stability analysis of the full-order system are
presented in Section 3. Time-histories and numerical stability
bounds are in Section 4. Major conclusions of the current work
are in Section 5.

2. The two-time-scale model

This paper develops a theory of output feedback control for
the following class of nonlinear, nonstandard, two-time-scale
systems:

ẋ = z

εż = ε(f1(x)g1(z) + f2(x)g2(z)) + px + qz + u.
(1)

Equation (1) refers to a class of second-order systems with the
displacement x being the slow state and the velocity z being
the fast state. The time-scale separation parameter ε satisfy-
ing 0 < ε << 1 represents how fast z is evolving compared to
x. The time-evolution of the fast state z is dictated by three
parts: one part (px + qz) is linear in the states; a second part

ε(f1(x)g1(z) + f2(x)g2(z)) is nonlinear in the states, and a third
part is the control input u.

The parameters p and q are known. The function f1(x) can
represent any sector-bounded nonlinearity in the slow state x,
contained between the line segments −F1|x| and F1|x|. Simi-
larly, g2(z) can be any sector-bounded nonlinearity in the fast
state z, contained between the line segments −G2|z| and G2|z|.
On the other hand, either of g1(z) and f2(x) can be any bounded
nonlinearity contained in [−G1,G1] and [−F2, F2], respectively.
For the purpose of control law development, no specific form
is assumed for any of the nonlinear functions, but the sectors
or magnitude-bounds F1,G1, F2,G2 are assumed to be known
constants. The nonlinearity f1(x)g1(z) + f2(x)g2(z) being mul-
tiplied by εmeans that this is present in the full-order dynamics,
but will not show up in the reduced-order dynamics obtained by
the substitution ε = 0.

3. Control law development

It is desired for the control to drive the slow state x from its initial
condition x(0) to the origin. The fast state z has an initial condi-
tion z(0), but does not have any specified reference. According
to the singular perturbation theory, the control umust be able to
stabilise z about any suitable equilibriummanifold z0 in the fast
time-scale, such that the slow state x can be regulated in the slow
time-scale. The method of sequential control (Narang-Siddarth
& Valasek, 2014) was developed to accomplish this objective.
However, this method assumes full-state feedback. In case all
the states are not explicitly measured, one way to design output
feedback control is to use a state observer to feed estimates of
the unmeasured states to the controller. Since the system under
study is nonlinear, and the controller and observer designs are
likely to be coupled, a new theory needs to be developed in
order to establish closed-loop stability under output feedback.
To be able to compare the existing full-state feedback design
and the new output feedback design, this Section first addresses
the design of the full-state feedback controller. Subsequently, the
output feedback design is discussed, and it includes three cases
of measurement: (a) only the slow state is measured, (b) only
the fast state is measured, (c) a linear combination of the states
is measured.

3.1 Full-state feedback controller design

The method of sequential control involves design of the mani-
fold and control to ensure the Lyapunov stability of the reduced
subsystems, and composite Lyapunov analysis to establish the
Lyapunov stability of the full-order system. In this paper, com-
posite Lyapunov analysis for full-state feedback is performed so
the result can be compared with that for output feedback.

3.1.1 Design ofmanifold and control
The first step in controller design using reduced subsystems is
the design of themanifold such that the reduced slow subsystem
is stabilised about x = 0. Substituting ε = 0 in the full-order
dynamics (1) the reduced slow subsystem is

ẋ = z0

0 = px + qz0 + u0
(2)
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where z0 is themanifold of the fast state to be designed, and u0 is
the effective control in the slow time-scale. For this subsystem, a
positive-definite candidate Lyapunov function and its derivative
with respect to the slow time-scale t are

Vsc = 1
2x

2

V̇sc = xẋ.
(3)

Let f (.)|(i) denote the value of the function f (.) for system
denoted by equation (i). For the reduced slow subsystem (2),
the time-derivative of the Lyapunov function Vsc becomes

V̇sc |(2) = xẋ|(2) = xz0. (4)

Choose the manifold as

z0 = −k1x (5)

where k1 > 0 is a gain, such that the time-derivative of the
Lyapunov function

V̇sc |(2) = −k1x2 (6)

is negative-definite. Thus the equilibrium x = 0 is Lyapunov-
stable.

The second step is to design the control u such that the
reduced fast subsystem is stabilised about the manifold z0
selected in the first step. Construct the fast time-scale τ = t/ε.
In this time-scale, the full-order system (1) becomes

x′ = εz

z′ = ε(f1(x)g1(z) + f2(x)g2(z)) + px + qz + u.
(7)

The ‘prime’ denotes differentiation with respect to the fast time-
scale τ . Set ε = 0 in (7) to obtain the reduced fast subsystem

x′ = 0

z′ = px + qz + u.
(8)

For this subsystem, a positive-definite candidate Lyapunov
function and its derivative with respect to the fast time-scale τ

are
Vfc = 1

2 (z − z0)2

V ′
fc = (z − z0)(z′ − z0′

).
(9)

For the reduced fast subsystem (8), the time-derivative becomes

V ′
fc |(8) = (z − z0)(z′|(8) − z0′|(8))

= (z − z0)(z′|(8) + k1x′|(8)) = (z − z0)(px + qz + u).
(10)

Design the control as

u = −(px + qz) − k2(z − z0) = −(p + k1k2)x − (q + k2)z
(11)

where k2 > 0 is another gain, such that the time-derivative

V ′
fc |(8) = −k2(z − z0)2 (12)

is negative-definite. Thus the equilibrium z = z0 for the reduced
fast subsystem is Lyapunov-stable.

It is important to note that although the control is designed
using the reduced subsystems given by (2) and (8), the con-
trol is to be implemented on the full-order system represented
by (1) or equivalently by (7). It is also important to note that the
full-order system is nonlinear, while the reduced subsystems are
linear. The difference between the full-order and reduced-order
dynamics and the proof that the control law ensures stability
of the full-order system up to a certain bound of time-scale
separation are addressed in the next section.

3.1.2 Stability of the full-order system: composite Lyapunov
analysis
The composite Lyapunov analysis (Khalil, 2002) starts with
selecting a candidate Lyapunov function for the full-order non-
linear system, and yields an upper bound ε∗ of the pertur-
bation parameter ε, up to which the time-derivative of this
Lyapunov function is negative-definite. Using a composite of the
two individual Lyapunov functions used for controller design, a
candidate Lyapunov function for the full-order system is

Vcfs = w1Vsc + w2Vfc . (13)

This function is positive-definite and radially unbounded for
any w1,w2 > 0. The factors w1,w2 > 0 are gains signifying the
contributions of the individual Lyapunov functions to the com-
posite. The following theorem gives the bound of the time-scale
separation parameter ε for stability of the full-order system
under full-state feedback.

Theorem 3.1: For any k1 > 0, k2 > 0,w1 > 0,w2 > 0, the full-
state feedback control law (11) keeps the equilibrium x = 0, z =
z0 of the full-order nonlinear system (1) (or equivalently (7)) glob-
ally asymptotically stable, and therefore z → z0, x → 0 as t →
∞ from any set of initial conditions z(0), x(0) for 0 < ε < ε∗,
where

ε∗ = 4w1w2k1k2
[|w2k21 − w1| + w2(F1G1 + F2G2k1)]2

+4w1w2k1(k1 + F2G2)

. (14)

Proof: The time-derivative of the composite Lyapunov func-
tion (13) for the full-order system (1) (equivalently (7)) is

V̇cfs = w1V̇sc |(1) + w2

ε
V ′
fc |(7). (15)

Adding and subtracting the time-derivatives of Lyapunov func-
tions for appropriate reduced subsystems, the time-derivative
of the composite Lyapunov function for the full-order system
becomes

V̇cfs = w1V̇sc |(2) + w2

ε
V ′
fc |(8) + w1(V̇sc |(1) − V̇sc |(2))

+ w2

ε
(V ′

fc |(7) − V ′
fc |(8)). (16)

The first two terms in the right-hand side of Equation (16)
correspond to the reduced-order dynamics. The third and the
fourth terms correspond to the difference between the full-
order and the reduced-order dynamics. Making appropriate
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substitutions for the time-derivatives of the Lyapunov functions,
Equation (16) becomes

V̇cfs = −w1k1x2 − w2

ε
k2(z − z0)2 + w1x(ẋ|(1) − ẋ|(2))

+ w2

ε
(z − z0)[(z′|(7) − z′|(8)) + k1(x′|(7) − x′|(8))].

(17)

Substituting for all the relevant dynamics terms, the time-
derivative of the composite Lyapunov function reduces to

V̇cfs = −w1k1x2 − w2

ε
k2(z − z0)2 + w1x(z − z0)

+ w2

ε
(z − z0)[ε(f1(x)g1(z) + f2(x)g2(z) + k1εz]. (18)

Notice that z(z − z0)= (z − z0 + z0)(z − z0) = (z − z0 − k1x)
(z − z0) = (z − z0)2 − k1x(z − z0). Therefore,

V̇cfs = −w1k1x2 − w2

ε
k2(z − z0)2 + w1x(z − z0)

+ w2k1(z − z0)2 − w2k21x(z − z0)

+ w2(z − z0)f1(x)g1(z) + w2(z − z0)f2(x)g2(z). (19)

Now,

(z − z0)f1(x)g1(z) ≤ |z − z0||f1(x)||g1(z)|
≤ |z − z0|F1|x|G1 = F1G1|x||z − z0| (20)

and

(z − z0)f2(x)g2(z) ≤ |z − z0||f2(x)||g2(z)| ≤ |z − z0|F2G2|z|
= F2G2|z − z0||z − z0 + z0|
= F2G2|z − z0||z − z0 − k1x|
≤ F2G2|z − z0|[|z − z0| + k1|x|]
= F2G2(z − z0)2 + F2G2k1|x||z − z0|.

(21)

Using (20) and (21), the time-derivative (19) can be written as

V̇cfs ≤ −w1k1x2 − w2

(
k2
ε

− k1
)

(z − z0)2

− (w2k21 − w1)x(z − z0)

+ w2(F1G1|x||z − z0| + F2G2(z − z0)2

+ F2G2k1|x||z − z0|). (22)

Notice that −(w2k21 − w1)x(z − z0) ≤ |w2k21 − w1||x||z − z0|.
Hence,

V̇cfs ≤ −w1k1x2 − w2

(
k2
ε

− k1 − F2G2

)
(z − z0)2

+ (|w2k21 − w1| + w2(F1G1 + F2G2k1))|x||z − z0|.
(23)

Inequality (23) can be written in the following vector-matrix
form:

V̇cfs ≤ −X
T
KX (24)

where X :=
[ |x|

|z−z0|
]
and

K :=

⎡
⎢⎣ w1k1

−1
2
(|w2k21 − w1| + w2(F1G1 + F2G2k1))

−1
2
(|w2k21 − w1| + w2(F1G1 + F2G2k1))

w2

(
k2
ε

− k1 − F2G2

)
⎤
⎥⎦ .

If K is positive-definite, the time-derivative of the composite
Lyapunov function is negative-definite everywhere in the state-
space, and thus the equilibrium x = 0, z = z0 is guaranteed to
be globally asymptotically stable. K2×2 is positive-definite if its
1 × 1 and 2 × 2 Leading Principal Minors (LPMs) are positive.
The 1 × 1 LPM of K is w1k1 which is positive since w1 > 0 and
k1 > 0 by design. The 2 × 2 LPM is positive if

w1k1w2

(
k2
ε

− k1 − F2G2

)

>
1
4
(|w2k21 − w1| + w2(F1G1 + F2G2k1))2 (25)

Solving for ε, one obtains 0 < ε < ε∗, where ε∗ is the upper
bound given by (14). This completes the proof. �

3.2 Output feedback using state observers

For the two-time-scale system (1), the unavailability of full-state
feedback means that the measurement can be either the slow
state x, or the fast state z, or a combination of x and z. This
paper investigates observer designs for all three cases: (a) only
the slow state is measured, i.e. the output equation is y = x,
(b) only the fast state is measured, i.e. the output equation is
y = z, (c) a linear combination of the states is measured, i.e. the
output equation is y = c1x + c2z, where c1 and c2 are nonzero
constants. The following three sections develop the theory of
observer design and stability analysis under output feedback for
these three cases.

3.2.1 Slow statemeasured
For this case, the system parameter q is assumed to be negative.
The full-order system with the state and output equations in the
slow time-scale is

ẋ = z

εż = ε(f1(x)g1(z) + f2(x)g2(z)) + px + qz + ū

y = x.

(26)

In the fast time-scale τ = t
ε
, the full-order system is

x′ = εz

z′ = ε(f1(x)g1(z) + f2(x)g2(z)) + px + qz + ū

y = x.

(27)

The output feedback control is denoted ū to distinguish it from
the full-state feedback control u. Since the slow state x is mea-
sured but the fast state z is not, the control law is modified from
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the full-state version u given by (11) to

ū = −(p + k1k2)x − (q + k2)ẑ (28)

with the fast state z replaced by its estimate ẑ. The state z
evolves in the fast time-scale. Consequently, an observer needs
to be designed to make the estimate ẑ converge to z in the fast
time-scale. The observer is designed based on the reduced fast
subsystem

x′ = 0

z′ = px + qz + ū

y = x.

(29)

Assume the observer dynamics to be a function of the observed
fast state, control and output, of the form

ẑ′ = φ(ẑ, ū, y). (30)

A positive-definite observer Lyapunov function candidate and
its derivative with respect to the fast time-scale τ are

Vfo = 1
2 (z − ẑ)2

V ′
fo = (z − ẑ)(z′ − ẑ′).

(31)

For the reduced fast subsystem (29), the time-derivative
becomes

V ′
fo |(29) = (z − ẑ)(z′|(29) − ẑ′|(30))

= (z − ẑ)(px + qz + ū − φ(.)).
(32)

Choose observer dynamics

φ(.) = py + qẑ + ū (33)

such that the time-derivative of the observer Lyapunov function
becomes

V ′
fo |(29) = q(z − ẑ)2 = −q̄(z − ẑ)2 (34)

where q̄ := −q. This time-derivative is negative-definite since
q was assumed to be negative. Thus the equilibrium ẑ = z is
asymptotically stable, and thus the observed fast state ẑ con-
verges to the actual fast state z evolving according to the reduced
fast dynamics (29).

An extension of the composite Lyapunov analysis is per-
formed to account for the difference between the full-order and
the reduced-order dynamics with the observer included. Sim-
ilar to the analysis for full-state feedback, the objective here is
to find a new upper bound ε∗∗ of the perturbation parameter
ε such that Lyapunov stability of full-order nonlinear system
is guaranteed in the range 0 < ε < ε∗∗. A candidate composite
Lyapunov function for the full-order system is

Vcob = α1Vsc + α2Vfc + α3Vfo . (35)

This function is a weighted sum of the two Lyapunov func-
tions used for the controller design and one Lyapunov function
used for the observer design. The gains α1,α2,α3 represent the
weights of the individual Lyapunov functions in the composite.
The composite Lyapunov function is positive-definite and radi-
ally unbounded for any α1,α2,α3 > 0. The following theorem

gives the bound of ε for which the full-order system (26) is
guaranteed to be globally asymptotically stable.

Theorem 3.2: Suppose that the system parameter q< 0. Let q̄ :=
−q. Suppose that the gains k1 > 0, k2 > 0,α1 > 0,α2 > 0,α3 >

0 can be selected such that the following inequalities hold:

2α1k1 > |α2k21 − α1| + (α2 + α3)(F1G1 + F2G2k1)

k2 >
q̄
3

2α3q̄ > α2|k2 − q̄|

(36)

then the output feedback control law (28) supported by the
observer (33) keeps the equilibrium x = 0, z = z0, ẑ = z of the
full-order nonlinear system (26), (33) globally asymptotically sta-
ble, and therefore ẑ → z, z → z0, x → 0 as t → ∞ from any
set of initial conditions ẑ(0), z(0), x(0) for 0 < ε < ε∗∗ where
ε∗∗ = min(ε∗∗

1 , ε∗∗
2 ) with

ε∗∗
1 = α2(2k2 − |k2 − q̄|)

2α2(k1 + F2G2) + |α2k21 − α1|
+α2(F1G1 + F2G2k1) + α3F2G2

ε∗∗
2 = 2α3q̄ − α2|k2 − q̄|

α3(F1G1 + F2G2(1 + k1))

(37)

Proof: The time-derivative of the composite Lyapunov func-
tion (35) for the full-order system is

V̇cob = α1V̇sc |(26) + α2

ε
V ′
fc |(27) + α3

ε
V ′
fo |(27). (38)

Adding and subtracting the time-derivatives of Lyapunov
functions for the appropriate reduced subsystems, the time-
derivative of the composite Lyapunov function becomes

V̇cob = α1V̇sc |(2) + α2

ε
V ′
fc |(8) + α3

ε
V ′
fo |(29)

+ α1(V̇sc |(26) − V̇sc |(2))
+ α2

ε
(V ′

fc |(27) − V ′
fc |(8)) + α3

ε
(V ′

fo |(27) − V ′
fo |(29)).

(39)

The first two terms on the right-hand side of Equation (39)
correspond to the two reduced subsystems used for controller
design. The third term corresponds to reduced subsystem used
for observer design. The next three terms correspond to the dif-
ference between the full-order and the reduced-order dynam-
ics. Substituting for appropriate Lyapunov functions and their
derivatives for the corresponding reduced subsystems leads to

V̇cob = −α1k1x2 − α2

ε
k2(z − z0)2 − α3

ε
q̄(z − ẑ)2

+ α1x(ẋ|(26) − ẋ|(2))
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+ α2

ε
(z − z0)[(z′|(27) − z′|(8)) − (z0′|(27) − z0′|(8))]

+ α3

ε
(z − ẑ)[(z′|(27) − z′|(29)) − (ẑ′|(27) − ẑ′|(29))].

(40)

Substituting for all the dynamics terms,

V̇cob = −α1k1x2 − α2

ε
k2(z − z0)2

− α3

ε
q̄(z − ẑ)2 + α1x(z − z0)

+ α2

ε
(z − z0)[ε(f1(x)g1(z)

+ f2(x)g2(z)) + ū − u + k1εz]

+ α3

ε
(z − ẑ)[ε(f1(x)g1(z) + f2(x)g2(z))]. (41)

Using Equations (11) and (28), the difference between the out-
put feedback control ū and the full-state feedback control u can
be expressed as

ū − u = (k2 − q̄)(z − ẑ). (42)

Upper bounds of the terms (z − z0)f1(x)g1(z) and
(z − z0)f2(x)g2(z) were found in the proof of Theorem 3.1.
They are given by (20) and (21), respectively. The other two
terms (z − ẑ)f1(x)g1(z) and (z − ẑ)f2(x)g2(z) can be bounded
as follows.

(z − ẑ)f1(x)g1(z) ≤ |z − ẑ||f1(x)||g1(z)|
≤ |z − ẑ|F1|x|G1 = F1G1|x||z − ẑ| (43)

and

(z − ẑ)f2(x)g2(z) ≤ |z − ẑ||f2(x)||g2(z)| ≤ |z − ẑ|F2G2|z|
= F2G2|z − ẑ||z − z0 + z0|
= F2G2|z − ẑ||z − z0 − k1x|
≤ F2G2|z − ẑ|(|z − z0| + k1|x|)
= F2G2|z − z0||z − ẑ| + F2G2k1|x||z − ẑ|

(44)

Using (42), (20), (21), (43), (44) and expressing z(z − z0) =
(z − z0)2 − k1x(z − z0), Equation (41) becomes

V̇cob ≤ −α1k1x2 − α2

ε
k2(z − z0)2 − α3

ε
q̄(z − ẑ)2

+ α1x(z − z0) + α2k1(z − z0)2

− α2k21x(z − z0) + α2

ε
(k2 − q̄)(z − z0)(z − ẑ)

+ α2F1G1|x||z − z0|
+ α2F2G2(z − z0)2 + α2F2G2k1|x||z − z0|
+ α3F1G1|x||z − ẑ|
+ α3F2G2|z − z0||z − ẑ| + α3F2G2k1|x||z − ẑ| (45)

The terms involving x(z − z0) and (z − z0)(z − ẑ) can be
bounded as

(α2k21 − α1)x(z − z0) ≤ |α2k21 − α1||x||z − z0|
α2

ε
(k2 − q̄)(z − z0)(z − ẑ) ≤ α2

ε
|k2 − q̄||z − z0||z − ẑ|

(46)

Using (46) and collecting coefficients,

V̇cob ≤ −α1k1x2 − α2

(
k2
ε

− k1 − F2G2

)
(z − z0)2

− α3

ε
q̄(z − z0)2

+ (|α2k21 − α1| + α2(F1G1 + F2G2k1))|x||z − z0|
+

(
α3F2G2 + α2

ε
|k2 − q̄|

)
|z − z0||z − ẑ|

+ α3(F1G1 + F2G2k1)|x||z − ẑ| (47)

Applying completion of squares, i.e. |a||b| ≤ 1
2 (a

2 + b2) to the
product terms |x| |z − z0|, |z − z0| |z − ẑ|, |x| |z − ẑ|, the time-
derivative (47) can be expressed in the following vector-matrix
form:

V̇cob ≤ −X̄
T
K̄X̄ (48)

where X̄ :=
[

x
z−z0
z−ẑ

]
and K̄ :=

[
k11 0 0
0 k22 0
0 0 k33

]
, with the diagonal

elements k11, k22, k33 given by

k11 = α1k1 − 1
2

(|α2k21 − α1| + (α2 + α3)(F1G1 + F2G2k1)
)

k22 = α2

(
k2
ε

− k1 − F2G2

)
− 1

2

[
|α2k21 − α1|

+ α2

(
k2 − q̄

ε
+ F1G1 + F2G2k1

)
+ α3F2G2

]

k33 = α3

ε
q̄ − α2|k2 − q̄|

2ε
− 1

2
α3(F1G1 + F2G2(1 + k1))

(49)
If all the diagonal elements of the matrix K̄ are positive, the
time-derivative of the composite Lyapunov function will be
negative-definite everywhere in the state-space, and hence the
equilibrium x = 0, z = z0, ẑ = z of the full-order nonlinear sys-
tem will be globally asymptotically stable. The element k11 is
positive if the first sufficient condition in (36) holds. The ele-
ment k22 is positive if 0 < ε < ε∗∗

1 , where ε∗∗
1 is given by (37).

The upper bound ε∗∗
1 is positive if the second sufficient condi-

tion in (36) holds. The element k33 is positive if 0 < ε < ε∗∗
2

where ε∗∗
2 is given by (37). The upper bound ε∗∗

2 is positive
if the third sufficient condition in (36) holds. Therefore, if all
the three sufficient conditions in (36) hold, global asymptotic
stability holds for 0 < ε < ε∗∗ where ε∗∗ = min(ε∗∗

1 , ε∗∗
2 ). This

completes the proof. �

3.2.2 Fast statemeasured
For this case, the system parameter p is assumed to be nonzero.
The full-order system with the state and output equations in the
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slow time-scale is

ẋ = z

εż = ε(f1(x)g1(z) + f2(x)g2(z)) + px + qz + ū

y = z

(50)

In the fast time-scale, the full-order system is

x′ = εz

z′ = ε(f1(x)g1(z) + f2(x)g2(z)) + px + qz + ū

y = z

(51)

The slow state x is not measured. The full-state feedback control
law u given by (11) is modified to the output feedback control

ū = −(p + k1k2)x̂ − (q + k2)z (52)

where x̂ is the estimate of x. In the fast time-scale, the slow state
x stays close to its initial condition x(0), but the initial condi-
tion x(0) is not captured from the measurement. The observer
needs to ensure that x̂ converges to x in the fast time-scale. The
observer is designed using the reduced fast subsystem

x′ = 0

z′ = px + qz + ū

y = z

(53)

obtained by substituting ε = 0 in the full-order dynamics (51).
Consider a state transformation ξ := x − lz, where l is a gain to
be chosen later. The estimate of ξ is ξ̂ := x̂ − lz. If the observer
produces an estimate ξ̂ , an estimate of the slow state x can imme-
diately be computed as x̂ = ξ̂ + lz. A Lyapunov function candi-
date for the observer and its time-derivative for the reduced fast
subsystem (53) are

Vfo = 1
2 (ξ − ξ̂ )2

V ′
fo |(53) = (ξ − ξ̂ )((x′|(53) − lz′|(53) − ξ̂ ′)

= (ξ − ξ̂ )(−l(p(ξ + lz) + qz + ū) − ξ̂ ′)

= (ξ − ξ̂ )(−lpξ − (l2 + q)z − lū − ξ̂ ′) (54)

Select observer dynamics

ξ̂ ′ = −lpξ̂ − (l2 + q)y − lū (55)

such that the time-derivative of the observer Lyapunov function
for the reduced fast subsystem becomes

V ′
fo |(53) = −lp(ξ − ξ̂ )2 (56)

For a nonzero p, if the gain l is chosen to be of the same sign as
p such that lp> 0, the time-derivative (56) is negative-definite,
indicating the equilibrium ξ̂ = ξ is asymptotically stable. Not-
ing that ξ̂ = ξ translates to the equilibrium x̂ = x, the observer
ensures convergence of the slow state estimate x̂ to the actual
slow state x for the reduced-order dynamics.

An extension of the composite Lyapunov analysis (Khalil,
2002) is performed in order to find the upper bound ε∗∗ of ε,

up to which stability of the original full-order nonlinear sys-
tem (50) is ensured. A Lyapunov function candidate for the
full-order system is constructed as

Vcob = β1Vsc + β2Vfc + β3Vfo . (57)

Similar to the case of slow state measured, this function is a
composite of the two individual Lyapunov functions used for
controller design and one Lyapunov function used for observer
design. This is positive-definite for any β1,β2,β3 > 0. The fol-
lowing theorem gives the bound of stability for the full-order
nonlinear system (50).

Theorem3.3: Suppose that the systemparameter p �= 0. Suppose
that the gains k1 > 0, k2 > 0,β1 > 0,β2 > 0,β3 > 0, and l sat-
isfying lp > 0 can be selected such that the following inequalities
hold:

2β1k1 > |β2k21 − β1| + (β2 + β3|l|)(F1G1 + F2G2k1) + β3k1

2k2 > |p + k1k2|

2β3lp > β2|p + k1k2|
(58)

then the output feedback control law (52) supported by the
observer (55) keeps the equilibrium x = 0, z = z0, x̂ = x of the
full-order nonlinear system (50), (55) globally asymptotically sta-
ble, and therefore x̂ → x, z → z0, x → 0 as t → ∞ from any
set of initial conditions x̂(0), z(0), x(0) for 0 < ε < ε∗∗ where
ε∗∗ = min(ε∗∗

1 , ε∗∗
2 ) with

ε∗∗
1 = β2(2k2 − |p + k1k2|)

β2(2k1 + 2F2G2 + F1G1 + F2G2k1)
+|β2k21 − β1| + β3(1 + |l|F2G2)

ε∗∗
2 = 2β3lp − β2|p + k1k2|

β3(1 + k1 + |l|(F1G1 + F2G2 + F2G2k1))

(59)

Proof: The proof is similar to that of Theorem3.2. An outline of
the proof is presented. The observer Lyapunov function isVfo =
1
2 (ξ − ξ̂ )2 = 1

2 (x − x̂)2, and its time-derivative for the reduced
fast subsystem is V ′

fo |(53) = −lp(ξ − ξ̂ )2 = −lp(x − x̂)2. These
follow from the definitions of ξ and ξ̂ . Introducing appropri-
ate reduced subsystems, the time-derivative of the composite
Lyapunov function can be written as

V̇cob = β1V̇sc |(2) + β2

ε
V ′
fc |(8) + β3

ε
V ′
fo |(53)

+ β1(V̇sc |(50) − V̇sc |(2))

+ β2

ε
(V ′

fc |(51) − V ′
fc |(8)) + β3

ε
(V ′

fo |(51) − V ′
fo |(53)).

(60)

Substituting for the time-derivatives of individual Lyapunov
functions,

V̇cob = −β1k1x2 − β2

ε
k2(z − z0)2

− β3

ε
lp(x − x̂)2 + β1x(z − z0)
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+ β2

ε
(z − z0)[ε(f1(x)g1(z) + f2(x)g2(z))

+ ū − u + k1εz]

+ β3

ε
(x − x̂)[εz − lε(f1(x)g1(z) + f2(x)g2(z))]. (61)

This can be simplified using (20), (21), and the following results:

ū − u = (p + k1k2)(x − x̂)

(x − x̂)z = (x − x̂)(z − z0) − k1x(x − x̂)

(x − x̂)f1(x)g1(z) ≤ F1G1|x||x − x̂|
(x − x̂)f2(x)g2(z) ≤ F2G2|z − z0||x − x̂| + F2G2k1|x||x − x̂|

(62)
Applying these results and collecting coefficients,

V̇cob ≤ −β1k1x2 − β2

(
k2
ε

− k1 − F2G2

)
(z − z0)2

− β3

ε
lp(x − x̂)2

+ (|β2k21 − β1| + β2(F1G1 + F2G2k1))|x||z − z0|

+ (β3(1 + |l|F2G2) + β2

ε
|p + k1k2|)|z − z0||x − x̂|

+ β3(k1 + |l|F1G1 + |l|F2G2k1)|x||x − x̂| (63)

Using completion of squares for the product terms |x||z − z0|,
|z − z0||x − x̂|, |x||x − x̂|, the time-derivative of the composite
Lyapunov function can be expressed in the following vector-
matrix form:

V̇cob ≤ −X̀
T
MX̀ (64)

where X̀ :=
[

x
z−z0
x−x̂

]
and M :=

[
μ11 0 0
0 μ22 0
0 0 μ33

]
, with the diagonal

elements μ11,μ22,μ33 given by

μ11 = β1k1 − 1
2

(|β2k21 − β1| + β2F1G1 + β2F2G2k1 + β3k1

+ β3|l|F1G1 + β3|l|F2G2k1)

μ22 = β2

(
k2
ε

− k1 − F2G2

)

− 1
2

(
|β2k21 − β1| + β2F1G1 + β2F2G2k1

+ β2

ε
|p + k1k2| + β3 + β3|l|F2G2

)

μ33 = β3

ε
lp − 1

2

(
β3 + β3|l|F2G2 + β3k1

+ β3|l|F1G1 + β3|l|F2G2k1 + β2

ε
|p + k1k2|

)
(65)

If all the diagonal elements of the matrix M are positive, the
time-derivative of the composite Lyapunov function will be
negative-definite everywhere in the state-space, and hence the
equilibrium x = 0, z = z0, x̂ = x of the full-order nonlinear sys-
tem will be globally asymptotically stable. The element μ11 is

positive if the first sufficient condition in (58) holds. The ele-
ment μ22 is positive if 0 < ε < ε∗∗

1 , where ε∗∗
1 is given by (59).

The upper bound ε∗∗
1 is positive if the second sufficient condi-

tion in (58) holds. The element μ33 is positive if 0 < ε < ε∗∗
2

where ε∗∗
2 is given by (59). The upper bound ε∗∗

2 is positive
if the third sufficient condition in (58) holds. Therefore, if all
the three sufficient conditions in (58) hold, global asymptotic
stability holds for 0 < ε < ε∗∗ where ε∗∗ = min(ε∗∗

1 , ε∗∗
2 ). This

completes the proof. �

3.2.3 Linear combination of slow and fast statesmeasured
For this case, the full-order system in the slow time-scale is

ẋ = z

εż = ε(f1(x)g1(z) + f2(x)g2(z)) + px + qz + ū

y = c1x + c2z.

(66)

In the fast time-scale, the full-order system is

x′ = εz

z′ = ε(f1(x)g1(z) + f2(x)g2(z)) + (px + qz) + ū

y = c1x + c2z.

(67)

Since none of the states x and z are directly measured, the
control law is modified from its full-state version (11) to

ū = −(p + k1k2)x̂ − (q + k2)ẑ (68)

where x̂ and ẑ are the estimates of the states. An observer needs
to estimate both x and z in the fast time-scale. The observer is
designed using the reduced fast subsystem

x′ = 0

z′ = px + qz + ū

y = c1x + c2z.

(69)

Assume the observer dynamics to be functions of the estimated
states x̂, ẑ, control ū and output y as

x̂′ = φ1(x̂, ẑ, ū, y)

ẑ′ = φ2(x̂, ẑ, ū, y)
(70)

where the functions φ1(.) and φ2(.) are to be chosen such that
the estimated states x̂, ẑ converge to the actual states x, z in the
fast time-scale. A positive-definite Lyapunov function candidate
for the observer is

Vfo = 1
2γ1(x − x̂)2 + 1

2γ2(z − ẑ)2 (71)

where γ1, γ2 > 0. For the reduced fast subsystem (69), the time-
derivative of this function is

V ′
fo |(69) = γ1(x − x̂)(x′|(69) − x̂′|(69))

+ γ2(z − ẑ)(z′|(69) − ẑ′|(69))
= −γ1(x − x̂)φ1(.)

+ γ2(z − ẑ)(px + qz + ū − φ2(.)). (72)
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Select the fast observer dynamics as

φ1(.) = l1(y − c1x̂ − c2ẑ)

φ2(.) = px̂ + qẑ + ū + l2(y − c1x̂ − c2ẑ)
(73)

where l1, l2 are observer gains. By this choice the time derivative
of the observer Lyapunov function becomes

V ′
fo |(69) = −X̆

TQX̆ (74)

where X̆ := [x − x̂ z − ẑ]T and

Q :=
[

γ1l1c1 1
2 (γ1l1c2 + γ2l2c1 − γ2p)

1
2 (γ1l1c2 + γ2l2c1 − γ2p) γ2(l2c2 − q)

]
(75)

If the gains γ1, γ2, l1, l2 are selected such that

γ1l1c1 > 0

γ1l1c1γ2(l2c2 − q) > 1
4 (γ1l1c2 + γ2l2c1 − γ2p)2

(76)

then Q is positive-definite, and consequently, the time-
derivative of the Lyapunov function Vfo for the reduced fast
subsystem is negative-definite. It can be said that

V ′
fo |(69) = −X̆

TQX̆ ≤ −λmin(Q)X̆T
X̆

= −λ((x − x̂)2 + (z − ẑ)2) (77)

whereλ := λmin(Q) is theminimumeigenvalue of thematrixQ.
Since Q is positive-definite, λ > 0, and its magnitude is dictated
by the choices of γ1, γ2, l1, l2. Equation (77) indicates that the
estimates x̂, ẑ will converge to the true states x, z for the reduced
fast subsystem (69).

Similar to the previous two cases of output feedback, an
extension of the composite Lyapunov analysis is performed to
find out an upper bound ε∗∗ of the perturbation parameter ε

such that the full-order nonlinear system with the controller
and the observer in the loop is Lyapunov-stable. A candidate
composite Lyapunov function for the full-order system (66) is

Vcob = δ1Vsc + δ2Vfc + δ3Vfo (78)

This function is positive-definite and radially unbounded for
any δ1, δ2, δ3 > 0. The following theorem gives the bound of
ε for the full-order system (66) to be globally asymptotically
stable.

Theorem 3.4: Suppose that the gains k1 > 0, k2 > 0, δ1 >

0, δ2 > 0, δ3 > 0 and γ1 > 0, γ2 > 0, l1, l2 satisfying (76) can be
selected such that the following inequalities hold:

2δ1k1 > |δ2k21 − δ1| + δ2(F1G1 + F2G2k1)

+ δ3(γ1k1 + γ2F1G1 + γ2F2G2k1)

2k2 > |p + k1k2| + |q + k2|
2δ3λ > δ2|p + k1k2|
2δ3λ > δ2|q + k2|

(79)

where λ is the minimum eigenvalue of the matrix Q defined
by (75). Then the output feedback controller (68) supported by

the observer (73) ensures that the equilibrium x = 0, z = z0, x̂ =
x, ẑ = z of the full-order system (66), (73) is globally asymp-
totically stable, and therefore ẑ → z, x̂ → x, z → z0, x → 0 as
t → ∞ from any set of initial conditions ẑ(0), x̂(0), z(0), x(0) for
0 < ε < ε∗∗ where ε∗∗ = min(ε∗∗

1 , ε∗∗
2 , ε∗∗

3 ) with

ε∗∗
1 = δ2(2k2 − |p + k1k2| − |q + k2|

δ2(F1G1 + F2G2(2 + k1) + 2k1)

+|δ2k21 − δ1| + δ3(γ1 + γ2F2G2

ε∗∗
2 = 2δ3λ − δ2|p + k1k2|

δ3(1 + k1)γ1

ε∗∗
3 = 2δ3λ − δ2|q + k2|

δ3γ2(F1G1 + F2G2(1 + k1))

(80)

Proof: The proof of this Theorem is similar to the ones of The-
orems 3.1 and 3.2. An outline of the proof is presented. Adding
and subtracting the time-derivatives of the Lyapunov functions
for the appropriate reduced subsystems,

V̇cob = δ1V̇sc |(2) + δ2

ε

∣∣∣∣
(8)

+ δ3

ε

∣∣∣∣
(69)

+ δ1(V̇sc |(66) − V̇sc |(2))

+ δ2

ε
(V ′

fc |(67) − V ′
fc |(8)) + δ3

ε
(V ′

fo |(67) − V ′
fo |(69)) (81)

Substituting for the Lyapunov functions and their time-
derivatives,

V̇cob ≤ −δ1k1x2 − δ2

ε
k2(z − z0)2 − δ3

ε
λ(x − x̂)2

− δ3

ε
λ(z − ẑ)2 + δ1x(z − z0)

+ δ2

ε
(z − z0)[ε(f1(x)g1(z) + f2(x)g2(z))

+ ū − u + k1εz]

+ δ3

ε
γ1(x − x̂)εz

+ δ3

ε
γ2(z − ẑ)ε(f1(x)g1(z) + f2(x)g2(z)) (82)

Expressing the difference between the output feedback con-
trol ū and full-state feedback control u as ū − u = (p +
k1k2)(x − x̂) + (q + k2)(z − ẑ), using the bounds (20), (21),
(43), (44), (62) for the terms involving the nonlinear functions
f1(x), g1(z), f2(x), g2(z), and performing completion of squares
for product terms like |x||z − z0|, |x − x̂||z − z0|, etc., the time-
derivative of the composite Lyapunov function becomes the
following inequality:

V̇cob ≤ −X̃
T
EX̃ (83)
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where X̃ =
[ x

z−z0
x−x̂
z−ẑ

]
andE =

[
η11 0 0 0
0 η22 0 0
0 0 η33 0
0 0 0 η44

]
with the diagonal

elements ηii; i = 1, 2, 3, 4 as follows:

η11 := δ1k1 − 1
2
(|δ2k21 − δ1|

+ (δ2 + δ3γ2)(F1G1 + F2G2k1) + δ3γ1k1)

η22 := δ2

(
k2
ε

− k1 − F2G2

)

− 1
2

(
|δ2k21 − δ1| + δ2

ε
|p + k1k2| + δ2

ε
|q + k2|

+ δ2(F1 + F2G2k1) + δ3(γ1 + γ2F2G2)

)

η33 := δ3

ε
λ − 1

2

(
δ2

ε
|p + k1k2| + δ3(1 + k1)γ1

)

η44 := δ3

ε
λ − 1

2

(
δ2

ε
|q + k2| + δ3γ2(F1G1 + F2G2(1 + k1))

)
(84)

If all the diagonal elements of the matrix E are positive, the
time-derivative of the composite Lyapunov function is negative-
definite everywhere in the state-space, and therefore the full-
order system is globally asymptotically stable. The element η11
is positive if the first sufficient condition in (79) is met. The
element η22 > 0 if 0 < ε < ε∗∗

1 , where the upper bound ε∗∗
1 is

specified in (80). The second sufficient condition in (79) ensures
that ε∗∗

1 is positive. The element η33 > 0 if 0 < ε < ε∗∗
2 , where

ε∗∗
2 is specified in (80). The third sufficient condition in (79)
ensures that ε∗∗

2 is positive. The element η44 > 0 if 0 < ε < ε∗∗
3 ,

where ε∗∗
3 is specified in (80). The fourth sufficient condition

in (79) ensures that ε∗∗
3 is positive. Therefore, if all four of the

sufficient conditions in (79) are satisfied, global asymptotic sta-
bility is guaranteed for 0 < ε < ε∗∗ = min(ε∗∗

1 , ε∗∗
2 , ε∗∗

3 ). This
completes the proof. �

4. Numerical examples

This section compares in simulation the performances of the
full-state feedback controller and the three different cases of out-
put feedback controllers developed in Section 3. In addition, by
choosing suitable gains for all of the cases, bounds of time-scale
separation are numerically evaluated such that stability of the
full-order nonlinear system is guaranteed within those bounds.

For simulation, the time-scale separation parameter ε is
assumed 0.01. The initial conditions of the states are x(0) =
5, z(0) = 5. The system parameters p and q are assumed as
p = 0.1, q = −0.9. The nonlinear functions are assumed as
follows:

f1(x) = F1x sin x

g1(z) =

⎧⎪⎨
⎪⎩

−G1 z < −0.1
10G1z −0.1 ≤ z < 0.1
G1 z ≥ 0.1

f2(x) = F2 cos x

g2(z) = 2
243 e

3G2z3 e−
√|z|.

(85)

The sector-bounds are F1 = 1,G2 = 1, and the magnitude-
bounds are F2 = 0.1,G1 = 0.1. As mentioned in Section 2, for
control law development only the bounds F1,G1, F2,G2 are
used. The exact expressions of the nonlinear functions are used
only to simulate the dynamics.

For full-state feedback, the controller gains are selected as
k1 = 1, k2 = 1. Figures 1(a) and 2(a) show the states and con-
trol for full-state feedback. It can be seen in Figure 1(a) that
the slow state remains almost constant at its initial condition,
while the fast state converges to its manifold in the fast time-
scale. Figure 2(a) show that the slow state converges to zero
in the slow time-scale, while the fast state stays on its mani-
fold. For output feedback with slow state measured, the control
gains are selected as k1 = 1, k2 = 2. Figures 1(b) and 2(b) show
the time-histories of the states and the control in the fast and
slow time-scales respectively for the case of only the slow state
being measured. For this case the observer produces estimates
of the fast state. The initial estimate of the fast state is ẑ(0) = 0.
Figure 1(b) shows that in the fast time-scale the estimate of the
fast state converges to the actual fast state, and that the fast state
converges to its manifold. Figure 2(b) shows that the slow state
x goes to zero in the slow time-scale, and that the fast state stays
on its manifold.

Figures 3(b) and 4(b) show the states and control when the
fast state is measured, and the observer produces estimates of
the slow state. For this case, the initial estimate of the slow state
is x̂(0) = −5, the controller gains are k1 = 1, k2 = 2, and the
observer gain is l = 10. Figure 3(b) shows the convergence of
the estimated slow state to the actual slow state, and that of the
fast state to its manifold in the fast time-scale. Subsequently,
the slow state reaches the origin while the fast state stays on its
manifold, as seen in Figure 4(b). For the case of output feed-
back with a linear combination of slow and fast states measured,
the observer produces estimates of both of the slow and the fast
states. The numbers c1, c2 in the output equations are assumed
as c1 = 0.1, c2 = 1. The initial estimates are x̂(0) = −5, ẑ(0) =
0. The observer gains are selected as l1 = 10, l2 = 5, and the
controller gains are chosen as k1 = 1, k2 = 1. Figure 5(b) shows
that both of the state estimates converge to the actual states
in the fast time-scale, and at the same time the fast state con-
verges to its manifold. Figure 6(b) that the slow state converges
to origin, and the fast state stays on itsmanifold in the slow time-
scale. In essence, for all of three cases of output feedback, the
state trajectories are similar to the ones for full-state feedback
once the observed states converge to the actual states in the fast
time-scale.

Table 1 shows a numerical comparison of the bounds of
ε for full-state and output feedback. Under output feedback
there are a total of three cases: slow state measured, fast state
measured, and linear combination of states measured. Conse-
quently Table 1 has one column for full-state feedback, and
three columns for the three different cases of output feedback.
The first few rows of Table 1 list the system parameters, known
bounds of nonlinear functions, and the initial conditions of
the states. These are the same for every case. The subsequent
row lists the initial estimates of the observed states. For full-
state feedback, there is no estimated state; however, for output
feedback there are either one or two estimated states. The next
few rows of Table 1 list the gains: there are some gains used in
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Figure 1. Comparison in the fast time-scale between full-state feedback and output feedbackwith slow statemeasured. (a) full-state feedback. (b) output feedback, slow
state measured.

Figure 2. Comparison in the slow time-scale between full-state feedback and output feedback with slow state measured. (a) full-state feedback. (b) output feedback,
slow state measured.

the control law, some in the observer dynamics, and some to
construct the composite Lyapunov functions. These gains are
different from one case to another so they satisfy the sufficient
conditions for the corresponding cases. For example, for the
case of fast state measured, the gains are chosen so they satisfy
the constraints in Theorem 3.2. The following row of Table 1

shows the candidate bounds of time-scale separation for each
case. These candidate bounds are computed according to The-
orems 3.1–3.4. For the case of full-state feedback, there is only
one candidate bound ε∗, but for each case of output feedback
there are multiple candidate bounds of ε. The ε∗∗ reported in
the last row is the minimum of those candidate bounds.

Figure 3. Comparison in the fast time-scale between full-state feedback and output feedback with fast state measured. (a) full-state feedback. (b) output feedback, fast
state measured.
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Figure 4. Comparison in the slow time-scale between full-state feedback and output feedback with fast state measured. (a) full-state feedback. (b) output feedback, fast
state measured.

Figure 5. Comparison in the fast time-scale between full-state feedback and output feedback with combination of slow and fast states measured. (a) full-state feedback.
(b) output feedback, combination of states measured.

Away to interpret the final bounds ε∗ and ε∗∗ in the last row
of Table 1 is as follows. For full-state feedback the current simu-
lation yields ε∗ = 0.9. This indicates that the full-state feedback
controller can ensure stability when the evolution of the fast
state is faster than 1/0.9 ≈ 1.1 times that of the slow state. Sim-
ilarly, the output feedback controller with slow state measured
can ensure stability when the evolution of the fast state is faster

than 1/0.6 ≈ 1.7 times that of the slow state. For the other two
cases of output feedback, stability is guaranteed if the fast state
evolves faster than 1/0.15 ≈ 6.7 or 1/0.03 ≈ 33 times that of the
slow state.

Remark 4.1: These numbers representing the bounds of sta-
bility can be altered by selecting different (a) controller gains,

Figure 6. Comparison in the slow time-scale between full-state feedback and output feedback with combination of slow and fast statesmeasured. (a) full-state feedback
and (b) output feedback, combination of states measured.
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Table 1. Comparison of stability bounds.

Full-state Output Output Output
feedback feedback feedback feedback

y = x y = z y= c1x+ c2z
c1 = 0.1
c2 = 1

System parameters p = 0.1 p = 0.1 p = 0.1 p = 0.1
q = −0.9 q = −0.9 q = −0.9 q = −0.9

Sector-bounds and F1 = 1 F1 = 1 F1 = 1 F1 = 1
magnitude-bounds of G1 = 0.1 G1 = 0.1 G1 = 0.1 G1 = 0.1
nonlinearities F2 = 0.1 F2 = 0.1 F2 = 0.1 F2 = 0.1

G2 = 1 G2 = 1 G2 = 1 G2 = 1
Initial conditions x(0) = 5 x(0) = 5 x(0) = 5 x(0) = 5
of the states z(0) = 5 z(0) = 5 z(0) = 5 z(0) = 5
Initial estimates none ẑ(0) = 0 x̂(0) = −5 x̂(0) = −5
of observed states ẑ(0) = 0
Controller gains k1 = 1 k1 = 1 k1 = 1 k1 = 1

k2 = 1 k2 = 2 k2 = 2 k2 = 1
Observer gains none no separate l = 10 l1 = 10

observer gain l2 = 5
Gains corresponding to w1 = 1 α1 = 1 β1 = 0.75 γ1 = 1
weights of individual w2 = 1 α2 = 0.3 β2 = 0.1 γ2 = 10
Lyapunov functions α3 = 0.3 β3 = 0.2 δ1 = 0.75

δ2 = 0.05
δ3 = 0.25

Candidate bounds ε∗ = 0.9 ε∗∗
1 = 0.6 ε∗∗

1 = 0.15 ε∗∗
1 = 0.03

of ε ε∗∗
2 = 2.3 ε∗∗

2 = 0.19 ε∗∗
2 = 0.06
ε∗∗
3 = 0.1

Final bound of ε ε∗ = 0.9 ε∗∗ = 0.6 ε∗∗ = 0.15 ε∗∗ = 0.03

(b) observer gains, (c) gains corresponding to weights of indi-
vidual Lyapunov functions in the composite.With the exception
of full-state feedback (Theorem 3.1), for any of the cases of out-
put feedback the new set of gains should satisfy the inequality
constraints given in Theorems 3.2, 3.3 or 3.4 so stability is still
guaranteed. The gains reported in Table 1 satisfy all the rele-
vant inequalities, but those gains were found using trial and
error. The selection of gains can be sequenced as follows. The
controller and observer gains typically indicate the closed-loop
speeds of response of the errors, so they are selected first. The
weights of Lyapunov functions are additional ‘tuning knob’s
which are selected later. However, an analytical computation of
a set of gains which will always satisfy these constraints is an
open problem.

Remark 4.2: If for a system ε > ε∗ or ε > ε∗∗, or in other
words if the fast state evolves slower than the rates corre-
sponding to ε∗ or ε∗∗, it does not automatically mean that the
closed-loop system will be unstable. However, stability of the
closed-loop system with the two-time-scale controller cannot
be guaranteed without further analysis. If ε is equal or close
to unity, it means that practically the system is not singularly
perturbed, i.e. there is no separation of time-scales between
the slow and the fast dynamics. In that case a two-time-scale
controller may not be needed.

5. Conclusions

This paper investigated and developed a theory of output feed-
back control for a class of nonlinear nonstandard two-time-scale
systems. This was achieved by using a sequential controller and
a state observer. The controller is designed partly in the slow
and partly in the fast time-scale, and the observer is designed

entirely in the fast time-scale. Depending upon the measure-
ment, the observer estimates either one or both of the states.
Based on the results presented in the paper, the following con-
clusions can be drawn.

The reduced subsystems being inherently linear simplifies
the selections of the controller and observer structures. How-
ever, the stability analysis addresses the nonlinearity and shows
that the selections of controller and observer gains are dictated
by the bounds of the nonlinear functions. This analysis proves
that global asymptotic stability for the full-order system with
the controller and the observer is guaranteed up to a certain
bound of time-scale separation. This bound is obtained in the
closed form for all three cases of measurement, and it can be
altered by varying the controller gains, observer gains and the
weights of individual Lyapunov functions in the composite. The
stability proof for each case of output feedback uses completion
of squares to find upper bounds of several product terms. This
leads to diagonal matrices so only the diagonal entries need to
be examined to establish closed-form bounds of time-scale sep-
aration as well as constraints on the gains. This is a candidate
approach for higher dimensional systems. Slow state regulation
is achieved, and the observed states converge to the actual states.
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