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This paper develops a multiple-timescale slow state tracking nonlinear controller to accomplish large-amplitude

combined longitudinal and lateral/directionalmaneuvers of a nonlinear, nonstandard six-degree-of-freedomaircraft

model in the presence of uncertain inertias, control derivatives, and an engine time constant. The control synthesis

uses the evolution of the slow states, slow actuators, fast states and fast actuators in a total of four different timescales.

Multiplicative and additive uncertainties in the evolution of the slow and the fast states are accounted for, as well as

multiplicative uncertainties in the slow and fast actuator dynamics. The controller is designed with insights from

geometric singular perturbation theory, and it is supported by update laws selected via a composite Lyapunov

analysis. The boundedness of the tracking errors,manifold errors and parameter estimation errors is proven; and the

magnitudes of the tracking errors, parameter estimation errors, and control signals can bemodulated by appropriate

choices of gains. The results presented in the paper using a nonlinear six-degree-of-freedom simulation show

improved velocity control for the multiple-timescale nonlinear controller as compared to a cascaded nonlinear

dynamic inversion controller.

Nomenclature

BX; BXY = constant but unknown parameter matrices in the
dynamics

bXYij
= the �i; j�th element of matrix BXY

fX; FXY = vector and matrix functions representing how states
evolve on their own

fXi
= the ith element of a vector function fX

GXY = matrix functions representing how actuators (com-
mands) dictate the evolution of states (actuators)

p̂ = estimate of an unknown parameter p
kQk2 = the induced 2-norm of a matrix Q; equivalently, its

largest singular value
R = the space of real numbers
Rn = the n-dimensional real space
uf = fast control

us = slow control
X, Y = generic subscripts
x = kinetic slow states
_x = derivative of x with respect to the slowest timescale
�x = derivative of x with respect to the second slowest

timescale
x 0 = derivative of x with respect to the second fastest

timescale
�x = derivative of x with respect to the fastest timescale
z = fast states
αi = weights of individual Lyapunov functions in the

composite Lyapunov function
δf = fast actuators

δs = slow actuators
ε = timescale parameter for fast states
θi = gains used in the parameter update laws

ΛXY = constant but unknown parameter matrices in control
distribution

λmin�A� = minimum eigenvalue of a matrix A
λXYij

= the �i; j�th element of a matrix ΛXY

kvk2 = the 2-norm (Euclidean norm) of a vector v
kvk∞ = the infinity norm of a vector v
ξ = kinematic slow states
ρ = timescale parameter for fast actuators
σ = timescale parameter for slow actuators

I. Introduction

DYNAMICS evolving in distinct slow and fast timescales are
observed in systems such as aircraft [1], spacecraft [2], robotic

manipulators [3], electrical power systems [4], biochemical reactions
[5], nuclear reactors [6], production planning in manufacturing [7], etc.
The geometric singular perturbation theory [8,9] is a powerful control
law development tool for multiple-timescale systems because it pro-
vides physical insight into the evolution of the states in more than one
timescales. Controller design using the geometric singular perturbation
(GSP) approach offers three benefits [10]. First, it does not require
linearization of the plant in order to synthesize a controller. Second, the
controller so designed does not use gain scheduling to address the space
of operating conditions. Third, the use of lower-order reduced subsys-
tems makes the design of controllers for high-dimensional systems less
complexand less susceptible to the “curseof dimensionality” [11].Even
though the approach uses lower-order subsystems, the composite Lya-
punov analysis [12] establishes the bounds of timescale separation
within which the stability of the full-order nonlinear system is guaran-
teed. In the context of flight control design, theGSPapproach retains the
coupling between the slow and the fast dynamics in different timescales
(e.g., phugoid and short periodmodes) rather than representing the plant
as decoupled phugoid and short-period approximations, for instance.
A generic nonlinear system with two timescales can be re-

presented as

_x � f�x; z; u�
ε _z � g�x; z; u� (1)

where x is the slow state, z is the fast state, u is the control input,
f�:�; g�:� are nonlinear functions, and ε is the timescale separation
parameter satisfying 0 < ε ≪ 1. Two extreme cases of timescale sep-
aration are ε � 0, which represents infinite separation (i.e., the fast
dynamics are infinitely fast), and ε � 1, which represents no separa-
tion (i.e., the rates of evolution of states x and z are similar). According
to GSP theory, the slow timescale is one in which the slow state x
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evolves and the fast state z stays on some equilibrium manifold z0.
The fast timescale is one in which the slow state x remains “frozen” at
its initial condition and the fast state z evolves to its equilibrium

manifold z0. To define the manifold mathematically, substitute ε � 0
in Eq. (1) to obtain

_x � f�x; z0; u�
0 � g�x; z0; u� (2)

The manifold z0�x; u� is an isolated real root of the algebraic

equation g�x; z0; u� � 0. If it is possible to compute a manifold

z0�x; u� that is an exact solution ofg�x; z0; u� � 0, system (1) is called
a standard system. Otherwise, it is called a nonstandard system. If the
function g�:� is nonlinear in the fast state z, the system is in general
nonstandard. The fast states for an aircraft are typically the body-axis
angular rates. The angular accelerations are nonlinear in the rates, thus
aircraft are examples of nonstandard systems. Although many works in
the literature addressed standard systems [13–21], the theory of control
design for nonstandard systems (specifically, nonlinear, nonstandard
systems) were explored only recently [10,22]. One of the important
control objectives for nonstandard systems is slowstate tracking.For this
objective, the fast states are allowed to settle onto any suitable equilib-
rium manifold. The method of modified composite control approxi-
mates the manifold [22], whereas the method of sequential control
specifies the manifold [10] as an intermediate control variable. The
fundamental idea behind sequential control is to use feedback to convert
an open-loop nonstandard system into a closed-loop standard system.
Earlier work on two-timescale aircraft flight control can be found in

papers by Khalil and Chen [1] and Menon et al. [23]. A nonlinear six-
degree-of-freedom (6-DOF) aircraft is an interesting example of a
multiple-timescale system because aircraft have slow and fast states
as well as slow and fast actuators. Velocity, aerodynamic angles, and
kinematic angles are the slow states; body-axis roll, and pitch and yaw
rates are the fast states. Because of the slow engine dynamics, the
throttle is considered a slow actuator, whereas aerodynamic control
surfaces are considered fast actuators. Some recent works applied the
theory of slow state tracking for nonstandard multiple-timescale sys-
tems to solve aircraft flight control problems. Modified composite
control was applied to a nonlinear 6-DOF generic F/A-18A com-
manded to perform a 45 deg turn [24]. The angle of attack, sideslip
angle, and heading angle were the states to be tracked. All of the
aerodynamic controlswere assumed infinitely fast. The engine dynam-
ics were not accounted for, and the throttle was held constant through-
out the maneuver. As a result, the Mach number decreased from 0.3 to
below 0.2 and never recovered as the aircraft turned. Although it was
not straightforward to include actuator dynamics in the modified
composite control, the method of sequential control was extended to
account for slow and fast actuator dynamics in the control synthesis
[10]. In a previous work by Saha et al., this method was applied to a
nonlinear 6-DOF generic F-16A commanded to perform two large-
amplitude combined longitudinal and lateral/directional maneuvers
[25]. One of the evaluation maneuvers was motivated by the modified
torsional agility parameter, which is a constant-altitude 90 deg banked
turn followed by a rapid roll reversal to an opposite 90 deg banked turn
[26]. The second evaluation maneuver was a turn sequence for which
the pilot inputs were generated by flying a generic F-16A in a cockpit-
based nonlinear 6-DOF flight simulator. The loss of airspeed during
turnswas significantly reduced for both of themaneuvers. In particular,
the loss of airspeed for a 90deg turnwaswithin50 ft∕s and thevelocity
rapidly returned to the trim value upon completion of the turn. Amajor
limitation of the method of sequential control applied to aircraft
maneuvers is the assumption of a deterministic model. A nonlinear
6-DOF aircraft model has several sources of uncertainty. Accurate
numerical values of inertias can be obtained by using other methods.
However, those methods cost a lot of time and money. The class-I
methods are meant for quick estimates at zero financial cost, even
though the inertia estimates may be “rough” estimates [27]. The
aerodynamics are oftenmodeledusing stability andcontrol derivatives,
with the control derivatives being more difficult to estimate accurately
than the stability derivatives. The engine is often the slowest primary
control actuator in the system for which the turbomachinery can be

modeled as a linear first-order system but with a time constant that is
not always known exactly. The uncertainties in inertias, control deriv-
atives, and engine time constants are parametric or multiplicative
uncertainties. The errors between the actual and modeled aerodynam-
ics can be viewed as additive uncertainties because the aerodynamic
forces and moments can be modeled as first-order Taylor series
approximations, with the first-order partial derivatives being the sta-
bility and control derivatives.
Some of the authors’ previous works developed controllers for

uncertain nonlinear, nonstandard multiple-timescale systems. However,
the scope of these works does not cover the class of systems of which
aircraft are examples. A slow state regulator for an uncertain nonlinear
nonstandard two-timescale system was developed in the work of Saha
et al. [28].Thisworkconsideredmultiplicative andadditiveuncertainties
in the fast dynamics. The controller used the estimate of the unknown
parameter and the worst-case equivalent of the additive uncertainty. An
online parameter estimator updated the parameter estimate, and the
update law was selected from the composite Lyapunov analysis. This
analysis, followed by an application of Barbalat’s lemma [29], proved
the convergence of the fast state to its equilibriummanifold and the slow
state to zero. The stability analysis also showed that the parameter
estimation error remains bounded but does not necessarily converge to
zero. This work did not consider actuator dynamics. A recent work of
Saha and Valasek [30] developed a three-timescale attitude tracking
controller for a nonlinear, nonstandard spacecraftwith uncertain inertias.
This work considered a separate timescale of the actuators in addition to
the timescales of the slow and the fast states. In addition, it considered
parametric uncertainties in the dynamics and in the control distribution
of the fast states only. The slow states represented the kinematics, and
they did not have any uncertainty in their evolution. The actuator
dynamics were not modeled with any uncertainty.
Developing a slowstate tracking controller for an aircraftwithmodel

uncertainties is challenging for several reasons. In contrast to the
spacecraft attitude tracking problem where the controller influences
rotational motion only, an aircraft flight controller must influence both
translational and rotational motions (i.e., both velocity and attitude) at
the same time. To consider velocity and attitude dynamics together, the
actuatorsmust be discriminated as slowand fast. For spacecraft attitude
tracking, the uncertainties are in the fast dynamics, i.e., the angular
rates only. Aircraft, by comparison, have uncertainties in the dynamics
of the kinetic slow states and the fast states, as well as the actuators.
Reference [25] showed the deterministic version of a Lyapunov-based
four-timescale GSP flight controller, but no previous result is available
to show how uncertainties can be handled in a way that guarantees the
stability of the full-order system for the casewith actuators classified as
slow and fast. Moreover, the GSP approach has not yet been compared
with one of the standard flight control design methodologies to ascer-
tain whether accounting for timescales in the system produces a more
effective controller. This paper makes two contributions in multiple-
timescale nonlinear control of nonlinear 6-DOF aircraft. First, a four-
timescale slow state tracking nonlinear controller is developed using
the GSP approach and a Lyapunov-based online parameter estimator.
The controller is designed to handle multiplicative and additive uncer-
tainties in the model and keep all of the errors ultimately bounded.
Second, the multiple-timescale nonlinear controller using the GSP
approach is directly compared to the well-known cascaded nonlinear
dynamic inversion (NDI) controller [31,32]. The aircraft is com-
manded to perform a combined longitudinal and lateral/directional
evaluation maneuver, consisting of a steep climb to reduce velocity,
followed by back-to-back turns. This maneuver is used to compare the
Euler angle and velocity tracking performance of the two controllers.
The paper is organized as follows. Section II discusses the class of

four-timescale systems and the control objective. Section III shows
the control law development. Numerical results including the com-
parison of the GSP and the NDI approaches are in Sec. IV, and
conclusions are in Sec. V.

II. Class of Systems and Control Objective

The principles of GSP are used to develop a slow state tracking
controller for a class of nonlinear systemswithmultiple timescales, as
well as multiplicative and additive uncertainties. The development
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considers a total of four timescales: the slow states evolving in the
slowest timescale; the slow actuators evolving in the second slowest
timescale; the fast states evolving in the second fastest timescale; and
the fast actuators evolving in the fastest timescale. The slow states to
track are classified as kinetic and kinematic states. The kinetic slow
states can be influenced directly by both the slow and the fast
actuators. The kinematic slow states can be influenced directly by
the fast states. The fast states can be influenced directly by the fast
actuators but not by the slow actuators. Except for the kinematic slow
states, all of the states and actuators have parametric uncertainties in
their evolution.Moreover, time-dependent and state-dependent static
uncertainties are considered as additive uncertainties in the evolution
of the kinetic slow and the fast states. The controller is developed on
the nonlinear state-space model:

_x�Bxxfxx�x;ξ��BxzFxz�x;ξ�z� γx�t;x;ξ; z��ΛxδsGxδs�x;ξ�δs
�ΛxδfGxδf �x;ξ�δf

_ξ�Fξz�x;ξ�z
σ_δs �Bδsfδs�δs��ΛδsusGδsus�δs�us
ε_z�

X
k

Bk
zf

k
z�x;ξ; z�� γz�t;x;ξ; z��ΛzδfGzδf �x;ξ�δfρ

_δf �Bδf fδf �δf��ΛδfufGδfuf �δf�uf (3)

The conversion of nonlinear aircraft equations to the form in Eq. (3)
and the mathematical expressions of the functions and matrices are
provided in Appendix A. In Eq. (3), x ∈ Rn is the vector of n kinetic
slow states, ξ ∈ Rm is the vector ofm kinematic slow states, z ∈ Rm is
the vector of m fast states, δs ∈ Rn is the vector of n slow actuators,
δf ∈ Rm is the vector of m fast actuators, us ∈ Rn is the vector of n
slow controls, and uf ∈ Rm is the vector of m fast controls. In the

context of an aircraft, x � vA is the velocity; ξ � �ϕ θ ψ �T are the
three Euler angles; z � �p q r �T are the three body-axis angular

rates; δs � δt is the throttle; δf � � δe δa δr �T are the three aero-

dynamic control surfaces (elevator, aileron and rudder); us � δtc is the
throttle command; and uf � � δec δac δrc � are the commanded

elevator, aileron, and rudder.
The “dot” represents the time derivativewith respect to the slowest

timescale t. The perturbation parameters σ, ε, and ρ satisfy
0 < ρ ≪ ε ≪ σ ≪ 1. The inclusion of three perturbation parameters
leads to a total of three additional timescales. The second slowest
timescale is tσ � �t∕σ�; the second fastest timescale is tε � �t∕ε�,
and the fastest timescale is tρ � �t∕ρ�. These timescale parameters

are added artificially to the aircraft dynamics to showexplicitlywhich
states evolve in which timescale.
The multiplicative uncertainties are captured in the constant but

unknown matrices Bxx, Bxz, Λxδs , Λxδf , Bδs , Λδsus , B
k
z , Λzδf , Bδf , and

Λδfuf . It is assumed that every unknown parameter pij in each

parameter matrix is bounded between a known lower bound p
ij

and a known upper bound �pij, i.e., pij ∈ �p
ij
; �pij�. The additive

uncertainties are included in the unknown vectors of functions γx�:�
and γz�:�. Even though the exact forms of these functions are
unknown, it is assumed that the Euclidean norms satisfy

kγx�t; x; ξ; z�k2 ≤ κ1kxk2 � κ2kξk2 � κ3kzk2
and

kγz�t; x; ξ; z�k2 ≤ κ4kxk2 � κ5kξk2 � κ6kzk2
for some known constants κi ≥ 0; i � 1; : : : ; 6. For the aircraft
problem, the multiplicative uncertainties represent inertias, aerody-
namic derivatives, and actuator characteristics; whereas the additive
uncertainties represent modeling errors, such as using a first-order
Taylor series approximation to model the aerodynamics. It is
assumed that the induced 2-norms or, equivalently, the largest sin-
gular values of the matrices satisfy the following: �σ�Bxz� ≤ v1,

�σ�Fxz� ≤ v2, �σ�Λxδs� ≤ v3, �σ�Gxδs� ≤ v4, �σ�Λxδf � ≤ v5, �σ�Gxδs� ≤
v6, �σ�Fξz� ≤ v7, �σ�Λzδf � ≤ v8, and �σ�Gzδf � ≤ v9 for some known

constants vi; i � 1; : : : ; 9. The vectors and matrices of functions are
assumed to consist of known smooth functions. The matrices Gxδs ,

Fξz, Gδsus , Gzδf , and Gδfuf are assumed to be full rank.

The control objective is to design the slow control vector us and the
fast control vectoruf such that the kinetic slow statevector x�t� tracks a
twice differentiable reference trajectory xr�t�, and the kinematic slow
state vector ξ�t� tracks a twice differentiable reference trajectory ξr�t�.
To achieve this objective using the GSP approach, the fast states z need
to be stabilized on a suitable equilibrium manifold z0, the slow actua-

tors δs need to be stabilized on a suitable equilibriummanifold δ0s , and
the fast actuators need to be stabilized on a suitable equilibrium

manifold δ0f. It is to be noted that the fast states, the slow actuators,

and the fast actuators work as intermediate control variables that are
designed in different timescales. Define the tracking errors ex ≔ x −
xr and eξ ≔ ξ − ξr and the manifold errors ez ≔ z − z0, eδs ≔
δs − δ0s , and eδf ≔ δf − δ0f. The tracking problem now becomes an

equivalent stabilization problem for the error system:

_ex�Bxxfxx�:��BxzFxz�:��ez�z0��γx�:��ΛxδsGxδs�:��eδs �δ0s�
�ΛxδfGxδf �:��eδf �δ0f�− _xr

_eξ�Fξz�:��ez�z0�− _ξr

σ _eδs �Bδsfδs�:��ΛδsusGδsus�:�us−σ _δ0s

ε _ez�
X
k

Bk
zf

k
z�:��γz�:��ΛzδfGzδf �:��eδf �δ0f�−ε_z0

ρ _eδf �Bδf fδf �:��ΛδfufGδfuf �:�uf−ρ_δ0f (4)

The arguments of the functions fxx, Fxz, etc., are the same as those
in Eq. (3). Henceforth, the arguments will not be shown explicitly
unless they are different from those in Eq. (3).

III. Control Law Development

The control law development involves two major stages. The first
stage is the design of a sequential timescale controller using principles
ofGSPwith estimates of the constant but unknownparametermatrices.
Using lower-order reduced subsystems, different parts of the controller
are designed in such away that stability of each subsystem in the sense
of Lyapunov is guaranteed when the parameter estimates are perfect.
The second stage in the development is the design of the update laws
for the constant but unknownparameters such that stability in the sense
of Lyapunov is ensured for the full-order system.

A. Design of the Four-Timescale Sequential Controller

A schematic of the controller design in four timescales is shown in
Fig. 1. The numbers 1, 2, 3, and 4 on the schematic indicate the
sequence in which the specific design variables appear in the control
law development.

1. Design of Manifold of Fast States and Slow Actuators in Slowest

Timescale

In the slowest timescale t, it is assumed that the fast states are on the

manifold z0, the slow actuators are on the manifold δ0s , and the fast

actuators are on a special case of themanifold δ0fjz0 . Themanifolds z0

and δ0s are selected such that the slow state error vectors ex and eξ go
to zero. To construct the reduced subsystem, the constant but
unknown parameter matrices Bxx, Bxz, Λxδs , and Λxδf are replaced

by their estimates B̂xx, B̂xz, Λ̂xδs , and Λ̂xδf , respectively; and the

additive uncertainty γx is ignored. The reduced subsystem in the
slowest timescale is

_ex � B̂xxfxx � B̂xzFxzz
0 − _xr � Λ̂xδsGxδsδ

0
s � Λ̂xδfGxδfδ

0
fjz0

_eξ � Fξzz
0 − _ξr (5)
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Apositive-definite candidate Lyapunov function for subsystem (5)

is selected as

V1 �
1

2
eTx ex �

1

2
eTξ eξ (6)

Along the trajectories of subsystem (5), the time derivative of the

Lyapunov function V1 is

_V1j�5� � eTx �B̂xxfxx � B̂xzFxzz
0 � Λ̂xδsGxδsδ

0
s � Λ̂xδfGxδfδ

0
fjz0 − _xr�

� eTξ �Fξzz
0 − _ξr� (7)

where fj�i� denotes the value of the function f�:� for a system

represented by a generic equation �i�. Suppose that the manifold of

the fast states z0 is selected as

z0 � F−1
ξz �_ξr − Kξeξ� (8)

and that the manifold of the slow actuators δ0s is selected as

δ0s � G−1
xδs
Λ̂−1
xδs
� _xr − B̂xxfxx − B̂xzFxzz

0 − Λ̂xδfGxδfδ
0
fjz0 − Kxex�

(9)

where Λ̂xδs
is assumed full rank, and δ0fjz0 is yet to be determined. For

these choices, the time derivative of the Lyapunov function V1 for

reduced subsystem (5) becomes

_V1j�5� � −eTxKxex − eTξKξeξ (10)

This is negative definite for any positive-definite Kx and Kξ,

indicating that the equilibrium ex � 0 and eξ � 0 of reduced sub-

system (5) is stable in the sense of Lyapunov. Note that the use of

kinetic and kinematic slow states enables sequential selections of the

manifolds z0 and δ0s in the control design.

2. Design of Slow Control in Second Slowest Timescale

In the second slowest timescale tσ � �t∕σ�, the slow controls us
are designed such that the slow actuators δs reach their manifold δ0s ;
consequently, slow actuator errors eδs go to zero. The reduced sub-

system in the second slowest timescale is

�eδs � B̂δs fδs � Λ̂δsusGδsusus (11)

which uses the estimates of the unknown parameter matrices Bδs and

Λδsus . A positive-definite candidate Lyapunov function for this sub-

system is selected as

V2 �
1

2
eTδs eδs (12)

Along the trajectories of reduced subsystem (11), the time deriva-

tive of V2 is

V� 2j�11� � eTδs�B̂δsfδs � Λ̂δsusGδsusus� (13)

If the vector of slow controls us is selected as

us � G−1
δsus

Λ̂−1
δsus�−B̂δsfδs − Kδs eδs � (14)

then the derivative of the Lyapunov function V2 with respect to the

second slowest timescale becomes

V� 2j�11� � −eTδsKδs eδs (15)

which is negative definite for any positive-definite Kδs . Thus, the

equilibrium eδs � 0 of reduced subsystem (11) is stable in the sense

of Lyapunov.

3. Design of Manifold of Fast Actuators in Second Fastest Timescale

In the second fastest timescale tε � �t∕ε�, the manifold of the fast

actuators δ0f is selected such that the fast states z reach their manifold

z0 or, equivalently, the fast state error vector ez becomes zero. To

construct the reduced subsystem, the constant but unknown param-

eter matricesBk
z andΛzδf are replaced by their estimates B̂k

z and Λ̂zδf ,

respectively, and the additive uncertainty γz is ignored. The reduced
subsystem in the second fastest timescale is

e 0
z �

X
k

B̂k
zf

k
z � Λ̂zδfGzδfδ

0
f (16)

A positive-definite candidate Lyapunov function for this subsys-

tem is

V3 �
1

2
eTz ez (17)

Along the trajectories of subsystem (16), the time derivative of this

Lyapunov function is

V 0
3j�16� � eTz

 X
k

B̂k
zf

k
z � Λ̂zδfGzδfδ

0
f

!
(18)

If the manifold of the fast actuators is selected as

Fig. 1 Steps of four-timescale slow state tracking control design (T.S. means timescale).
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δ0f � G−1
zδf

Λ̂−1
zδf

�
−
X
k

B̂k
zf

k
z − Kzez

�
(19)

where Λ̂zδf
is assumed full rank, then the time derivative of the

Lyapunov function V3 becomes

V 0
3j�16� � −eTz Kzez (20)

which is negative definite for any positive-definite Kz. This ensures
that the equilibrium ez � 0 of reduced subsystem (16) is stable in the

sense of Lyapunov. By design of the fast actuator manifold δ0f, the

special case δ0fjz0 needed in the slowest timescale can now be deter-

mined as

δ0fjz0 � −G−1
zδf

Λ̂−1
zδf

X
k

B̂k
zf

k
z�x; ξ; z0� (21)

4. Design of Fast Control in Fastest Timescale

In the fastest timescale tρ � �t∕ρ�, the fast controls uf are selected
such that the fast actuators δf reach their manifold δ0f or, equivalently,

fast actuator errors eδf � δf − δ0f reach zero. Considering estimates

of the unknown parameter matrices Bδf and Λδfuf , the reduced

subsystem in the fastest timescale is

�eδf � B̂δf fδf � Λ̂δfufGδfufuf (22)

A positive-definite candidate Lyapunov function for subsystem
(22) is selected as

V4 �
1

2
eTδf eδf (23)

Along the trajectories of reduced subsystem (22), the time deriva-
tive becomes

�V4j�22� � eTδf �B̂δf fδf � Λ̂δfufGδfufuf� (24)

If the fast control vector uf is selected as

uf � G−1
δfuf

Λ̂−1
δfuf �−B̂δf fδf − Kδf eδf � (25)

where Λ̂δfuf is assumed full rank, then the derivative of the Lyapunov

function V4 becomes

�V4j�22� � −eTδfKδf eδf (26)

which is negative definite for any positive-definite Kδf . Thus, the

equilibrium eδf � 0 of reduced subsystem (22) is stable in the sense

of Lyapunov.

B. Selection of Parameter Update Laws and Ultimate Boundedness
of Errors

This is the second stage in the control law development. It begins
with constructing a composite Lyapunov function that includes the
individual Lyapunov functions for the controller plus terms corre-
sponding to parameter estimation errors. For a generic parameter

matrixP and its estimate P̂, the estimation error is ~P ≔ P − P̂. For the
multiple-timescale system represented by Eq. (4), define parameter

estimation error matrices ~Bxx ≔ Bxx − B̂xx, ~Bxz ≔ Bxz − B̂xz,
~Λxδs ≔ Λxδs − Λ̂xδs ,

~Λxδf ≔ Λxδf − Λ̂xδf ,
~Bδs ≔ Bδs − B̂δs ,

~Λδsus ≔
Λδsus − Λ̂δsus ,

~Bk
z ≔ Bk

z − B̂k
z , ~Λzδf ≔ Λzδf − Λ̂zδf ,

~Bδf ≔ Bδf − B̂δf ,

and ~Λδfuf ≔ Λδfuf − Λ̂δfuf . A composite Lyapunov function for full-

order system (4) is selected as

Vc � α1V1�α2V2 �α3V3 �α4V4 �
1

2
α5tr

�
~BT
xx

~Bxx

�
� 1

2
α6tr

�
~BT
xz
~Bxz

�
� 1

2
α7tr

�
~ΛT
xδs

~Λxδs

�
� 1

2
α8tr

�
~ΛT
xδf

~Λxδf

�
� 1

2
α9tr

�
~BT
δs
~Bδs

�
� 1

2
α10tr

�
~ΛT
δsus

~Λδsus

�
� 1

2

X
k

α11ktr
�
~BkT
z

~Bk
z

�

� 1

2
α12tr

�
~ΛT
zδf

~Λzδf

�
� 1

2
α13tr

�
~BT
δf
~Bδf

�
� 1

2
α14tr

�
~ΛT
δfuf

~Λδfuf

�
(27)

where αi > 0; i � 1; : : : ; 14 represent the weights of the individual

Lyapunov functions in the composite, and tr�A� denotes the trace of a
matrix A. In terms of the individual elements of the parameter

estimation error matrices, the composite Lyapunov function can be

written as

Vc � α1V1 � α2V2 � α3V3 � α4V4 �
1

2
α5
X
i

X
j

~b2xxij

� 1

2
α6
X
i

X
j

~b2xzij �
1

2
α7
X
i

X
j

~λ2xδsij

� 1

2
α8
X
i

X
j

~λ2xδfij �
1

2
α9
X
i

X
j

~b2δsij �
1

2
α10
X
i

X
j

~λ2δsusij

� 1

2

X
k

α11k
X
i

X
j

~bk
2

zij �
1

2
α12
X
i

X
j

~λ2zδfij

� 1

2
α13
X
i

X
j

~b2δfij �
1

2
α14
X
i

X
j

~λ2δfufij (28)

For this choice of the Lyapunov function for full-order system (4),

Theorem 1 gives sufficient conditions for ultimate boundedness of all

of the errors: tracking errors, manifold errors, and parameter estima-

tion errors.
Theorem 1: Suppose that the slow state tracking controller for the

full-order nonlinear four-timescale system [Eq. (4)] is designed

according to Eqs. (8), (9), (14), (19), and (25) using estimates of

the unknown parameters. Suppose now that the estimates are updated

according to the following laws:

_̂
bxxij �

α1
α5

exifxxj −
θ1
α5

�
b̂xxij − b0xxij

�
_̂
bxzij �

α1
α6

exi�Fxzz
0�j −

θ2
α6

�
b̂xzij − b0xzij

�
_̂
λxδsij �

α1
α7

exi�Gxδsδ
0
s�j −

θ3
α7

�
λ̂xδsij − λ0xδsij

�
_̂
λxδfij �

α1
α8

exi�Gxδfδ
0
fjz0�j −

θ4
α8

�
λ̂xδfij − λ0xδfij

�
(29)

‵

b̂δsij �
α2
α9

eδsi fδsj −
θ5
α9

�
b̂δsij − b0δsij

�
‵

λ̂δsusij �
α2
α10

eδsi�Gδsusus�j −
θ6
α10

�
λ̂δsusij − λ0δsusij

�
(30)

b̂k
0

zij �
α3
α11k

ezif
k
zj −

θ7
α11k

�
b̂kzij − bk

0

zij

�

λ̂ 0
zδfij �

α3
α12

ezi�Gzδfδ
0
f�j −

θ8
α12

�
λ̂zδfij − λ0zδfij

�
(31)

�̂
bδfij �

α4
α13

eδfifδfj −
θ9
α13

�
b̂δfij − b0δfij

�
�̂
λδfufij �

α4
α14

eδfi�Gδfufuf�j −
θ10
α14

�
λ̂δfufij − λ0δfufij

�
(32)
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where yi denotes the ith element of the column vector y; θi > 0, i �
1; : : : ; 10 are estimator gains; and b0xxij , b

0
xzij , λ

0
xδsij

, λ0xδfij , b
0
δsij

, λ0δsusij ,

bk
0

zij , λ
0
zδfij

, b0δfij , and λ0δfufij are additional design variables. It is now

possible to choose the controller gains, estimator gains, and other

designvariables such that the tracking errors, themanifold errors, and

the parameter estimation errors remain ultimately bounded.

The detailed proof can be found in Ref. [33]. The essential steps of

the proof are presented in Appendix B. Note that selections of the

parameter update laws are similar to those of Dong andKuhnert [34].

Each update law has one term to cancel the associated error appearing

adjacent to the time derivative of the corresponding estimate. The

second part drives the estimate to a specified final value at a specified

rate of a first-order dynamic. The final values of the estimates are

specified by the design variables b0xxij , b
0
xzij , λ

0
xδsij

, etc.; and the rates

of the first-order dynamics are specified by the estimator gains

θi; i � 1; 2; : : : ; 10.

C. Summary of Multiple-Timescale Controller Development

The design steps of the multiple-timescale controller developed in

Secs. III.A and III.B are summarized in Table 1.

D. Comparison with Cascaded Nonlinear Dynamic Inversion
Controller Without Using Explicit Timescale Separation

An NDI controller without explicit classification of the states and

the actuators as slow and fast is designed for the purpose of compar-

ingwith theGSP controller. NDI is awell-known technique in aircraft

flight control [35–37] that was seen to achieve better performance

than a gain-scheduled linear controller with a similar level of design

effort [35]. Both noncascaded and cascaded versions of NDI can be

found in the literature [31,32]. The cascaded version of NDI develops

the controller structure in nested loops under the assumption of a

timescale separation between the inner and the outer loops; i.e., the

inner loop is faster than the outer loop. However, unlike the GSP

approach, this method neither constructs reduced subsystems nor

uses a Lyapunov framework explicitly in different timescales. The

design variables are selected using feedback linearization in succes-

sive loop closures. The derivatives of the design variables are needed

for subsequent steps, and they are estimated using first-order low-

pass filters.

For the control objective stated in Sec. II, it is not convenient to
apply cascaded NDI directly on the mathematical form of the full-
order system [Eq. (3)] with omission of the timescale separation
parameters σ, ε, and ρ. If the control objective is the tracking of the
kinematic states ξ only, it is convenient to treat x as known from

measurement and use the _ξ, _z, and _δf equations to design a cascaded
NDI controller. Alternatively, if the control objective is the tracking
of the kinetic states x only, it is convenient to treat ξ, z, and δf as

known from measurement and use the _x and _δs equations to design
another NDI controller. For the aircraft problem, if only the Euler
angles are to be tracked, a cascaded NDI controller can command the
aerodynamic controls under the assumption that velocity is somehow
stabilized by a separate controller. Alternatively, if only the velocity is
to be tracked, a cascaded NDI controller can command throttle with
the assumption that the Euler angles are somehow stabilized by a
separate controller. However, when both the kinetic and kinematic
states are to be tracked by a single controller, a way to implement
cascaded NDI is as follows. System (3) without the timescale param-
eters σ, ε, and ρ can be rewritten as

_eξ � Fξz�:�z − _ξr"
_z

_ex

#
�
2
4

P
k

Bk
zf

k
z�:� � γz�:�

Bxxfxx�:� � BxzFxz�:� � γx�:� − _xr

3
5

�
"

0 ΛzδfGzδf �:�
ΛxδsGxδs�:� ΛxδfGxδf �:�

#
δ

_δ � Bδfδ�δ� � ΛδuGδu�δ�u (33)

where

δ ≔

"
δs

δf

#
; Bδ ≔

"
Bδs 0

0 Bδf

#
; fδ�:� ≔

"
fδs�:�
fδf �:�

#
;

Λδu ≔

"
Λδsus 0

0 Λδfuf

#
; Gδu ≔

"
Gδsus 0

0 Gδfuf

#
;

and u ≔
� us
uf

�

Using the estimates of constant but unknown parameters, the
controller structure is

eξ � ξ− ξr

zd � Fξz�:�−1�_ξr −Kξeξ�
Tz _zc� zc � zd;zc�0� � zd�0�

ez � z− zc

ex � x− xr

δd �
2
4 0 Λ̂zδfGzδf �:�
Λ̂xδsGxδs�:� Λ̂xδfGxδf �:�

3
5−1

8<
:
2
4 _zc −

P
k

B̂k
zf

k
z�:�

_xr − B̂xxfxx�:�− B̂xzFxz�:�

3
5−

�
Kzez

Kxex

�9=
;

Tδ
_δc� δc � δd;δc�0� � δd�0�

eδ � δ− δc

u�Gδu�δ�−1Λ̂−1
δu �_δc − B̂δfδ�δ�−Kδeδ� (34)

It can be seen in Eq. (34) that the desired value zd of the states z and
the desired value δd of the actuators δ result from dynamic inversion,
canceling the nonlinearities and imposing linear dynamics. The
desired values zd and δd are passed through first-order filters with

Table 1 Design Steps of the Multiple-Timescale Controller
Using GSP

Step Description

1 Compute the tracking error for the kinematic slow states: eξ � ξ − ξr.
Choose gain Kξ.

Compute the manifold of the fast states: z0 � F−1
ξz �_ξr − Kξeξ�.

2 Compute the manifold error for the fast states: ez � z − z0.
Choose gain Kz.

Compute the manifold of the fast actuators:

δ0f � G−1
zδf

Λ̂−1
zδf

�
−
P

kB̂
k
zf

k
z − Kzez

�
.

3 Compute the fast actuator manifold error: eδf � δf − δ0f .
Choose gain Kδf .

Compute the fast control: uf � G−1
δfuf

Λ̂−1
δfuf

�
−B̂δf fδf − Kδf eδf

	
.

4 Compute a special case of the fast actuator manifold:

δ0fjz0 � −G−1
zδf

Λ̂−1
zδf

P
kB̂

k
zf

k
z�x; ξ; z0�.

Compute the tracking error for the kinetic slow states: ex � x − xr.
Choose gain Kx.

Compute the manifold of the slow actuators:

δ0s � G−1
xδs

Λ̂−1
xδs
� _xr − B̂xxfxx − B̂xzFxzz

0 − Λ̂xδfGxδfδ
0
fjz0 − Kxex�.

5 Compute the slow actuator manifold error: eδs � δs − δ0s .
Choose gain Kδs .

Compute the slow control us � G−1
δsus

Λ̂−1
δsus

�
−B̂δs fδs − Kδs eδs

	
.

6 Choose weights αi, estimator gains θi, and final values of estimates

b0xxij , b
0
xzij , λ

0
xδsij

, etc.

Update the estimates using Eqs. (29–32).
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time constants captured in matrices Tz and Tδ. The filtered outputs zc
and δc are used in the subsequent stages. Compared to the multiple-
timescale method, this controller has the additional design variables
of filter time-constant matrices Tz and Tδ. The parameter update laws
for this controller are similar to that of the multiple-timescale con-
troller, except for the fact that the actual values of the states and
actuators are used instead of manifolds wherever applicable.

IV. Numerical Results

This section compares the performance of the two nonlinear slow
state tracking controllers developed in Sec. III: the multiple-timescale
controller usingGSP, and the cascaded NDI controller. The simulation
is a non-real-time nonlinear 6-DOF generic F-16A. The evaluation
maneuver is a large-amplitude longitudinal and lateral/directional
maneuver that is a combination of those used in previous work by
Saha et al. [25] and Saha and Valasek [38]; but here, the pitch attitude
angle is commanded instead of the body-axis pitch rate. From trim, the
aircraft is commanded to perform a steep climb. During the climb, the
pitch attitude angle reaches a maximum to 80 deg in 10 s, stays at
80 deg for another 10 s, followed by a further 10 s for the nose to level
out. No banking or change of heading angle is commanded during the
climb. After the climb is complete, the aircraft is commanded to
perform a 90 deg left turn followed by a 90 deg right turn [26]. The
heading angle is desired to change by 90 deg in 15 s for each turn. The
bank angle and the pitch attitude angle associated with each turn are
commanded to reach a maximum from zero, and then they come back
to zero as the turn is complete. The maximum bank angle and pitch
attitude angle associatedwith each turn are 75 and 20 deg, respectively.
Thevelocity is commanded to be close to the trim value throughout the
maneuver. The simulation is run for 150 s for both controllers.
The flight condition is a steady, level, 1g trim flight at Mach 0.7

and 15,000 ft. The trim angle of attack and elevator deflection are 0.9
and −1.6 deg, respectively. The thrust at trim is 3265.0 lbf, which is
18.34% of the maximum military thrust of 17,800 lbf. The pitch
attitude angle at trim is the same as the trim angle of attack. All other
angles, rates, and control surface deflections are zero at trim.
Both controllers are applied to a plant subject to uncertainties in

inertias, control derivatives, and engine time constant. The initial
estimate of each of the inertias Ixx, Iyy, Izz, and Ixz is assumed to be
15% below its actual value. The initial estimate of each of the control
derivatives Cxδe

, Cyδa
, Cyδr

, Czδe
, Cmδe

, Clδa
, Clδr

, Cnδa
, and Cnδr

is

assumed to be 20%below its actual value. The engine time constant is
assumed to be 25% above its actual value.

A. Selection of the Numerical Values of the Control Gains

The gain matrices must be positive definite in order to guarantee
the stability of each reduced subsystem. Theorem 1 shows that the
gains can be selected such that errors remain ultimately bounded.
Equation (B6) in the proof of Theorem 1 presented in Appendix B
suggests that the gain matrices should be “large enough” such that βi;
i � 1; : : : ; 5 are positive, and each one of them exceeds the factor

�μ∕θ2r�. In practice, it may be difficult to know all of the values needed

to compute �μ∕θ2r�. For the present work, initial values for the gain
matrices were chosen and subsequently adjusted, depending on the
response of the corresponding states. The gains for the multiple-
timescale controller based on GSP are selected as Kx � 25,
Kξ � diag�2; 2; 1�, Kδs � 0.01, Kz � diag�25; 10; 5�, and Kδf �
diag�3; 2; 2�. The gains for the cascaded nonlinear dynamic inversion
controller are Kx � 10, Kξ � diag�2.5; 1.5; 1�, Kδs � 0.01, Kz �
diag�15; 15; 15�, and Kδf � diag�1; 1; 1�.

B. Selection of Numerical Values of Parameter Estimator Gains

The gains θi are included in the factor μ of �μ∕θ2r� in Eq. (B4) in
Appendix B, which presents the proof of Theorem 1. According to
Eq. (B4), the gains θi should be “small enough” such that βi can
exceed �μ∕θ2r� without making the control gains too large. At the
same time, the gains θi should be large enough such that each one of
�θ1∕2�, �θ2∕2�, �θ3∕2�, �θ4∕2�, �θ5∕2σ�. �θ6∕2σ�, �θ7∕2ε�, �θ8∕2ε�,
�θ9∕2ρ�, and �θ10∕2ρ� can exceed �μ∕θ2r�. Because of the coupling in

the equations, the analytical computation of suitable values for θi for
guaranteed stability is difficult. However, the gains θi physically
represent the rate at which the parameter estimates converge to their
assigned final values and can be adjusted by inspecting at what rate
the estimates respond. Some of the gains αi; i � 1; 2; 3 in the
parameter estimator are significantly smaller than the other gains
θi; i � 4; : : : ; 8 and are used to cancel the error terms in the parameter
update laws. In theory, they should be positive so that the composite
Lyapunov function is positive definite. However, even when each of
these gains is set to zero in simulation, the tracking of aircraft states
and controls is very similar to the case of small positivemagnitudes of
the gains. Only some of the parameter estimates are observed to not
evolve at all, but this is not as important as the tracking. Because the
gainsα1,α2, andα3multiply error terms, themagnitude of these gains
being small ensures that the contributions of error terms in the
parameter update laws are small, even for the case in which the errors
themselves become large.
The parameter estimator gains are selected as α1 � 10−13,

α2 � 10−14, α3 � 10−15, α8 � 1, α9 � 1, α10 � 1, α111 � 1,
α112 � 1, α12 � 1, and θi � 0.1; i � 4; 5; 6; 7; 8. The design varia-
bles corresponding to the final value of the estimates in the parameter
update laws are chosen such that the inertias, control derivatives, and
engine time constant are 5% above the actual values.

C. Selection of Numerical Values of Filter Time Constants for the
Cascaded NDI

The inherent assumption for the cascaded NDI to work according to
Eq. (33) is that the innermost loop of actuators δ is the fastest, the
outermost loop of the kinematic states ξ is the slowest, and the middle
loopof the states z andx has an intermediate rate of response.To enforce
this separation, each filter forδ is selected to respond10 times faster than
each filter for z. The filter time constants for the cascadedNDI controller
are selected as Tz � diag�1; 1; 1� and Tδ � diag�0.1; 0.1; 0.1; 0.1�.

D. Comparison of the Two Controllers

For both the GSP and NDI controllers, Figs. 2–7 show the time
histories of the states and controls and Figs. 8–14 show the evolution
of the uncertain parameters. The notations for the parameter matrices
are as follows:B1

z ≔ �Bij�3×5,B2
z ≔ �Sij�3×3, andΛzδf ≔ �Lij�3×3. The

mathematical expressions of the matrices are derived in Appendix A.
The multiple-timescale GSP and the cascaded NDI controllers

produce similar performances in some aspects and significant
differences in other aspects. Figures 8–14 show that the profiles of
the estimates are different in some cases but the difference in magni-
tude is small. The parameter estimation errors remain bounded for
both controllers, with theBmatrix (which is obtained bymultiplying
the inertia matrix with its inverse) having estimation errors that are
acceptably small in magnitude. Figures 4 and 5 show that the Euler
angles and the body-axis angular rates are almost the same for both
controllers. Both controllers are able to achieve good tracking of the
kinematic angles, even though they use the elevator, aileron, and
rudder somewhat differently, as seen in Fig. 7. The control surface
deflections are well within their position and rate limits for both
controllers. The angle of attack remains within acceptable limits for
both controllers, but it is slightly larger for the NDI. Sideslip angles
are within 6 deg for both controllers.
The significant difference between the two controllers concerns

the velocity response. Between the completion of the climb and the
initiation of the left turn, the maneuver has a gap of 10 s to allow
the velocity to return to the reference. It is seen from Fig. 2 that the
velocity initially drops from its trim value of 800 ft∕s to less than
500 ft∕s during the climb. The GSP controller is able to recover
velocity rapidly after the climb. There is also a loss of velocity for
each 90 deg turn, but the loss remains within 100 ft∕s and is recov-
ered as soon as each turn is complete. The cascaded NDI controller is
not able to recover even half of the lost velocity in more than 100 s
after the climb. In addition, some of the recovered velocity is lost
during the turns and requires additional time to be recovered again.
The throttle response in Fig. 6 shows that the GSP controller com-
mands 100% throttle for some time after the climb or turn is
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Fig. 2 Velocity, angle of attack, and sideslip angle during the climb and turn maneuver.

Fig. 3 Downrange, crossrange, and altitude of the generic F-16A during the climb and turn maneuver.

Fig. 4 Bank angle, pitch attitude angle, and heading angle during the climb and turn maneuver.
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Fig. 5 Body-axis roll, pitch, and yaw rates during the climb and turn maneuver.

Fig. 6 Commanded and actual throttle during the climb and turn maneuver.

Fig. 7 Elevator, aileron, and rudder commands and deflections during the climb and turn maneuver.
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Fig. 8 Uncertain parameters Bδs and Λδsus during the climb and turn maneuver.

Fig. 9 Uncertain parameters Cxδe
, Cyδa

, Cyδr
, and Czδe

during the climb and turn maneuver.

Fig. 10 Uncertain parameters B11–B15 during the climb and turn maneuver; the x axis of each graph representing the time in seconds.
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completed in order to recover the lost velocity. By comparison, the

NDI controller reduces throttle as soon as the climb or turn is
complete. Figure 3 shows a difference in the altitude profiles for

the two different controllers. The GSP controller leads to climbing
turns with a noticeable change in altitude during each turn. On the

other hand, the gain in altitude for each turn is small for the NDI
controller. Furthermore, the NDI controller leads to a decrease in

altitude and an increase in velocity from t � 110 s onward. It is to be
noted that, during this period, there is still a significant error in

velocity, the throttle is already reduced, and the pitch attitude angle
is close to zero. It can be inferred that the aircraft effectively tries to
regain velocity by dropping altitude while keeping the nose close to

horizontal. This is not the case with the GSP controller, for which the
velocity has exceeded the trim value during turn, and it slowly

decreases to trim from t � 110 s onward. Figure 3 also shows that

the aircraft traverses a longer distance during the turns under GSP

control as compared to cascaded NDI control because of the higher

velocity achieved with the GSP controller.
The appreciable difference in the velocity response can be attributed

to how the cascaded NDI is formulated for both kinetic and kinematic

state tracking. The formulation in Eq. (33) inherently assumes that all

of the actuators forming the innermost loop are faster than the states.

This is not a good assumption when the real system has both slow and
fast actuators, and the slow actuator is slower than the fast state. For

example, the throttle for an aircraft responds slower than the body-axis

angular rates, and this information is not captured accurately by the

cascaded NDI. This suggests that, for an aircraft control objective of
tracking both velocity and Euler angles, the multiple timescale GSP

controller is able to make better use of the physical insight into aircraft

dynamics, and therefore achieves better control of velocity.

Fig. 11 Uncertain parameters B21–B25 during the climb and turn maneuver; the x axis of each graph representing the time in seconds.

Fig. 12 Uncertain parameters B31–B35 during the climb and turn maneuver; the x axis of each graph representing the time in seconds.
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V. Conclusions

This paper developed a multiple-timescale slow state tracking
nonlinear controller to accomplish large-amplitude combined longi-
tudinal and lateral/directional maneuvers of a nonlinear six-degree-
of-freedom aircraft modeled with uncertainties in inertias, control
derivatives, and engine time constant. Tracking errors, manifold
errors, and parameter estimation errors were proven to be ultimately
bounded; and the magnitude of each error was made arbitrarily small
with suitable choices of gains. The controller was able to achieve
slow state tracking even though the initial estimates of all of the
unknown parameters were off by a reasonable amount. The angle of
attack and sideslip angle were neither tracked nor used as intermedi-
ate controls, but they remain bounded and within acceptable limits.
Gains and other design variables in the parameter update laws were
chosen such that each unknown parameter multiplying a control
signal never became zero, and so therewas no singularitywith respect
to the controls.
The results presented in the paper compared themultiple-timescale

nonlinear controller with a cascaded nonlinear dynamic inversion

controller. Both controllers tracked the Euler angles adequately, but
the former achieved better tracking of velocity due to an explicit
distinction of the states, and especially the actuators, as slow and fast
by means of timescale separation parameters. As a consequence, it
was able to better use a physical insight into the dynamics. The
geometric singular perturbation approach is judged to be a suitable
candidate for aircraft systems with slow and fast states, as well as
slow and fast actuators.

Appendix A: Vector Functions, Matrix Functions,
and Parameter Matrices for a Nonlinear

Six-Degree-of-Freedom Aircraft

The vectors and matrices used for control law development can be
derived from the six kinetic and six kinematic equations of a non-
linear 6-DOF aircraft. The nonlinear 6-DOF generic F-16A model
with the definitions of all the states, parameters, and aerodynamic
stability and control derivatives were contained in the work of
Stevens and Lewis [39]:

Fig. 14 Uncertain parameters L11–L33 during the climb and turn maneuver.

Fig. 13 Uncertain parameters S31–S33 during the climb and turn maneuver.
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_vA �
1

m
�cosαcosβ�−mgsinθ�Tmδt�FAX

�
� sinβ�mgcosθsinϕ�FAy

�
� sinαcosβ�mgcosθcosϕ�FAz

��
_α�q−pcosα tanβ−rsinα tanβ

−
sinα

mvA cosβ
�−mgsinθ�Tmδt�FAx

�

� cosα

mvA cosβ
�mgcosθcosϕ�FAz

�

_β�psinα−rcosα−
sinβcosα

mvA
�−mgsinθ�Tmδt�FAx

�

� cosβ

mvA
�mgcosθ sinϕ�FAy

�

−
sinβ sinα

mvA
�mgcosθcosϕ�FAz

�

Ixx _p��Iyy− Izz�qr� Ixz�_r�pq��LA

Iyy _q��Izz− Ixx�rp� Ixz�r2−p2��MA

Izz _r��Ixx− Iyy�pq� Ixz� _p−qr��NA

_ϕ�p� tanθ�qsinϕ�rcosϕ�
_θ�qcosϕ−rsinϕ

_ψ ��qsinϕ�rcosϕ�secθ
_xN � vA�cosαcosβcosθcosψ� sinβ�sinϕcosψ sinθ−cosϕsinψ�

� sinαcosβ�cosϕsinθcosψ� sinϕsinψ��
_yN � vA�cosαcosβcosθ sinψ� sinβ�sinϕsinψ sinθ�cosϕcosψ�

� sinαcosβ�cosϕsinθsinψ − sinϕcosψ��
_h� vA�cosαcosβ sinθ− sinβsinϕcosθ− sinαcosβcosϕcosθ�

(A1)

The body-axis aerodynamic forces and moments are modeled

using component buildup as

FAx
�
�
Cx�α; δe� � Cxq

q �c

2vA

�
�qS

FAy
�
�
Cyβ β� Cyp

pb

2vA
� Cyr

rb

2vA
� Cyδa

δa � Cyδr
δr

�
�qS

FAz
�
�
Cz�α; β� � Czq

q �c

2vA
� Czδe

δe

�
�qS

LA �
�
Cl�α; β� � Clp

pb

2vA
� Clr

rb

2vA
� Clδa

δa � Clδr
δr

�
�qSb

MA �
�
Cm�α; δe� � Cmq

q �c

2vA
� xcgr − xcg

�c

×
�
Cz�α; β� � Czq

q �c

2vA
� Czδe

δe

��
�qS �c

NA �
�
Cn�α; β� � Cnp

pb

2vA
� Cnr

rb

2vA
� Cnδa

δa � Cnδr
δr

� xcgr − xcg
b

�
Cyβ β� Cyp

pb

2vA
� Cyr

rb

2vA

� Cyδa
δa � Cyδr

δr

��
�qSb (A2)

The aerodynamic database contains the coefficients Cx�:�; Cz�:�;
Cl�:�; Cm�:�, andCn�:� as lookup tables for−10 deg ≤ α ≤ 45 deg,
−30 deg ≤ β ≤ 30 deg, and −25 deg ≤ δe ≤ 25 deg. For values
of α, β, and δe not included or outside the range, the nonlinear 6-DOF

simulation has routines for interpolation and extrapolation. Using the

data from the lookup tables, the force coefficient Cx and the moment

coefficient Cm are approximated using linear least squares. The

approximated forms are

Cx�α; δe� ≈ Cx0 � Cxαα� Cxδe
δe

Cm�α; δe� ≈ Cm0
� Cmα

α� Cmδe
δe (A3)

where Cx0 , Cxα , Cxδe
, Cm0

, Cmα
, and Cmδe

are least square solutions.

The aerodynamic database provides the control derivatives Clδa
,

Clδr
,Cnδa

, andCnδr
as functions of α and β. The actual values of all of

these derivatives are assumed to be the numbers corresponding to the

trim angle of attack and the trim sideslip angle. The other model

parameters and constants used for the flight control design do not

require the use of lookup tables. They are given in Table 2. Tm

represents the maximum military thrust; δemax
, δamax

, and δrmax
refer

to the maximum allowable deflections of the elevator, aileron, and

rudder, respectively. The other symbols are according to Ref. [39].

The kinetic slow state is x � vA, the kinematic slow state vector is

ξ � �ϕ θ ψ �T , the vector of fast states is z � �p q r �T , the
slow actuator is δs � δt, and the vector of fast actuators is

δf � � δe δa δr �T . The velocity dynamics can be written as

_x�fxx�x;ξ;α;β��Fxz�x;α;β�z�Gxδs
�α;β�δs�Gxδf

�x;α;β�Λxδf
δf

(A4)

where

fxx�:� ≔ g�− cos α cos β sin θ� sin β cos θ sinϕ

� sinα cos β cos θ cosϕ

� �qS

m
��Cx0 � Cxαα� cos α cos β� Cyβ β sin β

� Cz�α; β� sin α cos β�

Fxz�:� ≔

2
6664

1
mCyp

b
2vA

�qS sin β

1
mCxq

�c
2vA

�qS cos α sin β� 1
mCzq

�c
2vA

�qS sin α cos β

1
mCyr

b
2vA

�qS sin β

3
7775

T

Gxδs�:� ≔
Tm

m
cos α cos β

Gxδf ≔
�qS

m

2
664
cos α cos β

sin β

sin α cos β

3
775

Λxδf ≔

2
664
Cxδe

0 0

0 Cyδa
Cyδr

Czδe
0 0

3
775 (A5)

It is to be noted that the arguments of fxx�:�; Fxz�:�; Gxδs�:�, and
Gxδf �:� contain the angle of attack α and the sideslip angle β in

addition to the slow states x and ξ. For the current flight control

problem, α and β are treated as known from measurement. They are

not considered separately for tracking.
The Euler angles evolve according to

2
4 _ϕ

_θ
_ψ

3
5 �

2
4 1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ

cos θ
cosϕ
cos θ

3
5"pq

r

#
(A6)

The evolution of the Euler angles is already in the form
_ξ � Fξz�ξ�z, where
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Fξz ≔

2
4 1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ

cos θ
cosϕ
cos θ

3
5 (A7)

Starting from the following formulation of the evolution of the

body-axis angular rates,

2
664

_p

_q

_r

3
775 � I−1

2
664

0 0 Ixz Iyy − Izz 0

−Ixz Ixz 0 0 Izz − Ixx

0 0 Ixx − Iyy −Ixz 0

3
775�f1�:� �

� I−1

2
664

LA

MA

NA

3
775 (A8)

with � f1�:� � ≔ �p2 r2 pq qr rp �T ;

I ≔

2
4 Ixx 0 −Ixz

0 Iyy 0

−Ixz 0 Izz

3
5

and introducing the timescale separation parameter ε artificially,
Ref. [33] derives the final form:

ε

2
664

_p

_q

_r

3
775 �

2
664
B11 B12 B13 B14 B15

B21 B22 B23 B24 B25

B31 B32 B33 B34 B35

3
775� f1�:� �

�

2
664
S11 S12 S13

S21 S22 S23

S31 S32 S33

3
775
2
664
f21�x; z; α; β�
f22�x; z; α; β�
f23�x; z; α; β�

3
775

�

2
664
L11 L12 L13

L21 L22 L23

L31 L32 L33

3
775 �qS

2
664
δe

δa

δr

3
775 (A9)

where � Sij �3×3 ≔ I−1,

�Bij �3×5 ≔ I−1

2
4 0 0 Ixz Iyy − Izz 0

−Ixz Ixz 0 0 Izz − Ixx
0 0 Ixx − Iyy −Ixz 0

3
5

and

2
664
f21�:�
f22�:�
f23�:�

3
775

≔

2
666664

�
Cl�α;β��Clp

pb
2vA

�Clr
pb
2vA

�
�qSb�

Cm0
�Cmα

α�Cmq

q �c
2vA

� xcgr−xcg
�c

�
Cz�α;β��Czq

q �c
2vA

��
�qS �c�

Cn�α;β��Cnp
pb
2vA

� xcgr−xcg
b

�
Cyβ β�Cyp

pb
2vA

�Cyr
rb
2vA

��
�qSb

3
777775

(A10)

�Lij�3×3

≔I−1

2
66664

0 Clδa
b Clδr

b�
Cmδe

�xcgr−xcg
�c Czδe

�
�c 0 0

0
�
Cnδa

� xcgr−xcg
b Cyδa

�
b
�
Cnδr

�xcgr−xcg
b Cyδr

�
b

3
77775

(A11)

This is equivalent to

ε_z � B1
zf

1
z � B2

zf
2
z � ΛzδfGzδfδf (A12)

where B1
z ≔ �Bij�3×5, B2

z ≔ �Sij�3×3, f1z ≔ �p2 r2 pq qr rp �T ,
f2z ≔ � f21�:� f22�:� f23�:� �T , Λzδf ≔ �Lij�3×3, and Gzδf ≔ �qS.

The perturbation parameters σ and ρ are introduced artificially in
the actuator dynamics. The engine, elevator, aileron, and rudder are
first-order actuators with time constants Teng, Tel, Tail, and Trud,

respectively. The engine time constant is uncertain. As a result, the
functions, matrices, and parameters representing the actuator dynam-
ics are Bδs ≔ −�1∕Teng�, fδs ≔ δs, Λδsus ≔ �1∕Teng�, Gδsus ≔ 1,

fδf ≔
h
− 1

Tel
δe − 1

Tail
δa − 1

Trud
δr
i
T

and

Gδfuf ≔ diag

�
1

Tel

;
1

Tail

;
1

Trud

�

No uncertain parameter is associated with the fast actuator dynam-
ics for the aircraft simulation.

Appendix B: Proof of Theorem 1: Ultimate
Boundedness of Errors

Proof: Considering the difference between the full-order and the
reduced-order dynamics and simplifying, the time derivative of the
composite Lyapunov function becomes

Table 2 Some of the parameters for the generic F-16A

Parameter Value

m 636.94 slug

g 32.17 ft∕s2

b 30 ft

S 300 ft2

�c 11.32 ft

Ixx 9496 slug ⋅ ft2

Iyy 55,814 slug ⋅ ft2

Izz 63,100 slug ⋅ ft2

Ixz 982 slug ⋅ ft2

xcgr 0.35 �c

Tm 17,800 lbf

δemax
�25 deg

δamax
�20 deg

δrmax
�30 deg

xcg 0.30 �c

Cyβ −0.02∕ deg
Cyδa

1.05 × 10−3∕deg
Cyδr

2.87 × 10−3∕deg
Czδe

−7.6 × 10−3∕deg
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_Vc � −α1�eTxKxex � eTξKξeξ� −
α2
σ
eTδsKδs eδs −

α3
ε
eTz Kzez

−
α4
ρ
eTδfKδf eδf � α1e

T
x �BxzFxzez � γx

� ΛxδsGxδs eδs � ΛxδfGxδf �eδf � δ0f − δ0fjz0�� � α1e
T
ξFξzez

� α3
ε
eTz �γz � ΛzδfGzδf eδf � − α2e

T
δs
_δ0s − α3e

T
z _z

0 − α4e
T
δf
_δ0f

�
X
i

X
j

~bxxij

�
α1exifxxj − α5

_̂
bxxij

�

�
X
i

X
j

~bxzij

�
α1�exi�Fxzz

0�j − α6
_̂
bxzij

�

�
X
i

X
j

~λxδsij

�
α1�exi�Gxδsδ

0
s�j − α7

_̂
λxδsij

�

�
X
i

X
j

~λxδfij

�
α1�exi�Gxδfδ

0
fjz0 �j − α8

_̂
λxδfij

�

� 1

σ

X
i

X
j

~bδsij

�
α2eδsifδsj − α9

‵

b̂δsij

�

� 1

σ

X
i

X
j

~λδsusij

�
α2eδsi�Gδsusus�j − α10

‵

λ̂δsusij

�

� 1

ε

X
k

X
i

X
j

~bkzij

�
α3ezif

k
zj − α11kb̂

k 0
zij

�

� 1

ε

X
i

X
j

~λzδfij

�
α3ezi�Gzδf

δ0f�j − α12λ̂
0
zδfij

�

� 1

ρ

X
i

X
j

~bδfij

�
α4eδfifδfj − α13

‵

b̂δfij

�

� 1

ρ

X
i

X
j

~λδfufij

�
α4eδfi�Gδfufuf�j − α14

‵

λ̂δfufij

�
(B1)

Selecting parameter update laws according to Eqs. (29–32), the

time derivative [Eq. (B1)] becomes

_Vc�−α1�eTxKxex�eTξKξeξ�−
α2
σ
eTδsKδs eδs −

α3
ε
eTz Kzez

−
α4
ρ
eTδfKδf eδf �α1e

T
x



BxzFxzez�γx

�ΛxδsGxδs eδs �ΛxδfGxδf

�
eδf �δ0f−δ0fjz0

	��α1e
T
ξFξzez

�α3
ε
eTz �γz�ΛzδfGzδf eδf �−α2e

T
δs
_δ0s −α3e

T
z _z

0−α4e
T
δf
_δ0f

�θ1
X
i

X
j

~bxxij

�
b̂xxij −b0xxij

�

�θ2
X
i

X
j

~bxzij

�
b̂xzij −b0xzij

�
�θ3

X
i

X
j

~λxδsij

�
λ̂xδsij −λ0xδsij

�

�θ4
X
i

X
j

~λxδfij

�
λ̂xδfij −λ0xδfij

�

�θ5
σ

X
i

X
j

~bδsij

�
b̂δsij −b0δsij

�
�θ6

σ

X
i

X
j

~λδsusij

�
λ̂δsusij −λ0δsusij

�

�θ7
ε

X
k

X
i

X
j

~bkzij

�
b̂kzij −bk

0

zij

�

�θ8
ε

X
i

X
j

~λzδfij

�
λ̂zδfij −λ0zδfij

�
�θ9

ρ

X
i

X
j

~bδfij

�
b̂δfij −b0δfij

�

�θ10
ρ

X
i

X
j

~λδfufij

�
λ̂δfufij −λ0δfufij

�
(B2)

Equation (B2) has some terms to be upper bounded. For any con-

stant but unknown parameterp bounded asp ≤ p ≤ �p, the expression

~p�p̂ − p0� � ~p�p − ~p − p0� � ~p�p − p0� − ~p2

≤
1

2
� ~p2 � �p − p0�2� − ~p2 ≤

1

2
max
p≤p≤ �p

�p − p0�2 − 1

2
~p2

� 1

2
p� −

1

2
~p2

where

p� � max
p≤p≤ �p

�p − p0�2

Extending this result to all the parameters, Eq. (B2) can be upper
bounded as

_Vc ≤ −α1�eTxKxex � eTξKξeξ� −
α2
σ
eTδsKδs eδs −

α3
ε
eTz Kzez

−
α4
ρ
eTδfKδf eδf � α1e

T
x �BxzFxzez � γx � ΛxδsGxδs eδs

� ΛxδfGxδf �eδf � δ0f − δ0fjz0�� � α1e
T
ξFξzez

� α3
ε
eTz �γz � ΛzδfGzδf eδf � − α2e

T
δs
_δ0s − α3e

T
z _z

0 − α4e
T
δf
_δ0f

−
θ1
2

X
i

X
j

~b2xxij −
θ2
2

X
i

X
j

~b2xzij −
θ3
2

X
i

X
j

~λ2xδsij

−
θ4
2

X
i

X
j

~λ2xδfij −
θ5
2σ

X
i

X
j

~b2δsij −
θ6
2σ

X
i

X
j

~λ2δsusij

−
θ7
2ε

X
k

X
i

X
j

~bk
2

zij −
θ8
2ε

X
i

X
j

~λ2zδfij −
θ9
2ρ

X
i

X
j

~b2δfij

−
θ10
2ρ

X
i

X
j

~λ2δfufij � μ0 (B3)

where

μ0 ≔
θ1
2

X
i

X
j

b�xxij �
θ2
2

X
i

X
j

b�xzij �
θ3
2

X
i

X
j

λ�xδsij

� θ4
2

X
i

X
j

λ�xδfij �
θ5
2σ

X
i

X
j

b�δsij �
θ6
2σ

X
i

X
j

λ�δsusij

� θ7
2ε

X
k

X
i

X
j

bk
�
zij �

θ8
2ε

X
i

X
j

λ�zδfij �
θ9
2ρ

X
i

X
j

b�δfij

� θ10
2ρ

X
i

X
j

λ�δfufij (B4)

Equation (B3) has some terms that involve the equilibrium mani-
folds and their time derivatives. Given themathematical expressions of
the manifolds chosen during controller design, it is difficult to use the
exact expressions of either the manifolds themselves or their time
derivatives. To find upper bounds of these terms, the extreme value
theorem is used in a manner similar to the approach of Swaroop et al.
[40,41]. Let N1 denote the combined dimension of the states and the

unknown parameters. Consider a compact setQ1 ∈ RN1 characterized
by the composite Lyapunov function inEq. (27) and upper bounded by
�V; i.e., Vc ≤ �V for some �V > 0. Let N2 denote the combined dimen-
sion of the references and their time derivatives of first and second

orders. Consider a compact set Q2 ∈ RN2 , characterized by

kxrk22 � k _xrk22 � k �xrk22 � kξrk22 � k_ξrk22 � k�ξrk22 ≤ R2

for someR > 0. Then,Q ≔ Q1 ×Q2 is a compact set inRN1�N2 , and

all the elements of the vectors z0, δ0f − δ0fjz0 , _δ0s , _z0, and _δ0f are

continuous functions in the compact set Q. Therefore, each element
of these vectors has a maximum; consequently, there exist constants
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M1, M2, M3, M4, and M5 such that kz0k∞ � M1, kδ0f − δ0fjz0k∞ �
M2, k_δ0sk∞ � M3, k_z0k∞ � M4, and k_δ0fk∞ � M5. Upper bounds of

other cross terms involving the products of errors can be foundbyusing

the following results: 1) Cauchy–Schwarz inequality of uTv ≤
kuk2kvk2, 2) property of induced norm of matrices of kAxk ≤
kAkkxk, 3) induced 2-norm of a matrix that is the same as its largest

singular value, 4) Young’s inequality of ab ≤ �1∕2��a2 � b2�, and
5) introduction of artificial variables to obtain quadratic bound using

Young’s inequality:

kvk2 ≤
1

2

�
χ2i �

1

χ2i
kvk22

�

for any arbitrary nonzero χi. Using all of these results, the time

derivative of the composite Lyapunov function [Eq. (B3)] reduces to

the following:

_Vc ≤−β1eTx ex − β2e
T
ξ eξ − β3e

T
δs
eδs − β4e

T
z ez − β5e

T
δf
eδf −

θ1
2

X
j

~b2xxij

−
θ2
2

X
i

X
j

~b2xzij −
θ3
2

X
i

X
j

~λ2xδsij −
θ4
2

X
i

X
j

~λ2xδfij

−
θ5
2σ

X
i

X
j

~b2δsij −
θ6
2σ

X
i

X
j

~λ2δsusij −
θ7
2ε

X
k

X
i

X
j

~bk
2

zij

−
θ8
2ε

X
i

X
j

~λ2zδfij −
θ9
2ρ

X
i

X
j

~b2δfij −
θ10
2ρ

X
i

X
j

~λ2δfufij �μ

(B5)

where βi; i � 1; 2; 3; 4; 5 are given by

β1 ≔
1

2
α1

�
2λmin�Kx� − �2κ1 � κ2 � κ3� − v1v2

−
κ1R� κ2R� κ3M1

����
m

p
χ21

− v3v4 − v5v6 −
v5v6M2

����
m

p
χ21

�

−
α3κ4
2ε

≔ α1λmin�Kx� − �β1 −
α3k4
2ε

β2 ≔
α1
2
�2λmin�Kξ� − κ2 − v7� −

α3κ5
2ε

β3 ≔
1

2

�
2
α2
σ
λmin�Kδs� − α1v3v4 −

α2M3

���
n

p
χ22

�
≔

α2
σ
λmin�Kδs� − �β3

β4 ≔
1

2

α3
ε

�
2λmin�Kz� − �κ4 � κ5 � 2κ6� −

κ4R� κ5R� κ6M1

����
m

p
χ23

− v8v9 −
M4

����
m

p
χ23

�
−
α1
2
�v1v2 � κ3 � v7�

≔
α3
ε
�λmin�Kz� − β41� − β42

β5 ≔
1

2

�
2
α4
ρ
λmin�Kδf � −

α4M5

����
m

p
χ24

− α1v5v6 −
α3
ε
v8v9

�

≔
α4
ρ
λmin�Kδf � − �β5 −

α3v8v9
ε

(B6)

where λmin�A� is the minimum eigenvalue of a matrix A, and the

constants �β1, �β3, �β5, β41, and β42 contain the terms involving neither

the gainsKx,Kξ,Kz,Kδs , andKδf nor the perturbation parametersσ, ε,
and ρ. The factor μ is given by

μ ≔ μ0 �
1

2

h
α1
�
κ1R� κ2R� κ3M1

����
m

p 	
χ21 � α1v5v6M2

����
m

p
χ21

� α3
ε

�
κ4R� κ5R� κ6M1

����
m

p 	
χ23

� α2M3

���
n

p
χ22 � α3M4

����
m

p
χ23 � α4M5

����
m

p
χ24

i
(B7)

with μ0 given by Eq. (B4). Note that μ can be written in the form

μ � μ1 �
μ2
σ
� μ3

ε
� μ4

ρ
(B8)

where μi; i � 1; 2; 3; 4 are constants. Furthermore, define the
following:

η≔min



β1;β2;β3;β4;β5;

θ1
2
;
θ2
2
;
θ3
2
;
θ4
2
;
θ5
2σ

:
θ6
2σ

;
θ7
2ε

;
θ8
2ε

;
θ9
2ρ

;
θ10
2ρ

�

�η≔
1

2
maxfα1;: : : ;α10;α11k;α12;: : : ;α14g (B9)

In addition, consider e to be the vector formed by stacking
up in one column all the errors: tracking errors for the slow
states, deviation from equilibrium manifolds of fast states and
actuators, and all parameter estimation errors. Inequality (B5) can
be expressed as

_Vc ≤ −ηkek22 � μ

≤ −
η

�η
Vc � μ (B10)

Inequality (B10) shows that _Vc is negative outside the compact set

kek2 >
���
μ

η

r

Therefore, the errors will be ultimately bounded within

0 ≤ kek2 ≤
���
μ

η

r

Suppose that it is desired tokeep the error vectore ultimately bounded

within a ball of radius θr; i.e., _Vc < 0 on the boundary of the ball

represented by kek2 � θr. This is possible if −ηθ2r � μ < 0; i.e., if

η >
μ

θ2r
(B11)

This is equivalent to saying that every element in the set

A ≔


β1; β2; β3; β4; β5;

θ1
2
;
θ2
2
;
θ3
2
;
θ4
2
;
θ5
2σ

:
θ6
2σ

;
θ7
2ε

;
θ8
2ε

;
θ9
2ρ

;
θ10
2ρ

�

is greater than �μ∕θ2r�. Therefore, if the gains and other design
variables are chosen such that every element in the set A exceeds

�μ∕θ2r� for some σ, ε, and ρ > 0, then there exist bounds σ		, σ		, ε		,
ε		, ρ		, and ρ		 such that the ultimate boundedness of errors is
guaranteed for σ		 ≤ σ ≤ σ		, ε		 ≤ ε ≤ ε		, and ρ		 ≤ ρ ≤ ρ		.
This completes the proof. □

The inclusion of parametric uncertainties in actuator dynamics
leads to a set of coupled inequalities [Eq. (B11)]. The solutions to
these inequalities are the bounds of timescale separation parameters
for the ultimate boundedness of errors. If the actuators are assumed
free of uncertainty, these inequalities can be simplified to obtain
closed-form bounds of timescale separation [33].
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