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The trajectory-following control problem for a general class of nonlinear multi-input/multi-output two time-scale
system is revisited. While most earlier works used singular perturbation theory and assumed that an isolated real
root exists for the nonlinear set of algebraic equations that constitute the slow subsystem, here, two time-scale systems
are analyzed in the context of integral manifolds. It is shown that the singularly perturbed system has a center
manifold and, for small values of the slow state, an approximate solution of the nonlinear set of transcendental
equations can be computed. Geometric singular perturbation theory is used as the model-reduction technique, and
modified composite control design is used to formulate the stabilizing control laws for slow state tracking. The control
laws are independent of the scalar perturbation parameter and an upper bound for it, and the closed-loop error
signals are determined such that uniform boundedness of the closed-loop system is guaranteed. Additionally,
asymptotic stabilization is shown for the nonlinear regulation problem. The methodology is demonstrated through
numerical simulation of a nonlinear generic two-degree-of-freedom Kinetic model and a nonlinear, coupled, six-
degree-of-freedom model of the F/A-18A Hornet. Results demonstrate that the methodology permits close tracking of
a reference trajectory while maintaining all control signals within specified bounds.
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M, = invariant manifold of reduced-order subsystems
n = number of fast variables
00 = order symbol
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p = number of control variables

Dsq,r = body roll, pitch, and yaw rates, deg /s
r = degree of smoothness

S = reference area, ft’

t = slow time scale

T, = maximum thrust, Ib

to = initial time

some finite time; greater than 7,

control vector

Lyapunov function for closed-loop reduced slow
subsystem

speed of sound, ft/s

vector [x, €]”

Lyapunov function for closed-loop reduced fast
subsystem

state variables of full-order system

tracking error

error between fast variable and exact manifold
angle of attack, deg

sideslip angle, deg

perturbation quantities

elevator, aileron, and rudder control inputs, deg
scalar perturbation parameter

*(er = upper bound for scalar perturbation parameter
(for stabilization problem)

throttle input

pitch attitude angle, deg

w,y = wind-axes orientation angles, deg
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v(t, X, Z) = Lyapunov function for complete system
0 = density of air, slug/ft*
T fast time scale
d(.) = approximation of exact manifold
¢ = roll attitude angle, deg
o(.) = approximation to exact manifold
v = heading angle, deg
’ = derivative with respect to slow time scale
! = derivative with respect to fast time scale
Il = Euclidean norm
Subscripts
b = bound on variable
r = reference
Superscripts
S = stable
U = unstable

I. Introduction

ATHEMATICAL modeling of many physical systems

requires high-order dynamic equations. The presence of
parameters such as spring constant, mass, and moments of inertia are
the cause of stiffness and increased order of these equations. It is
difficult to arrive at exact analytical solutions of these nonlinear
governing equations with known, and sometimes unknown, variable
coefficients, so an approximate solution is often computed. Singular
perturbation theory is a scheme used to simplify systems that
inherently possess both fast and slow dynamics. Such systems are
characterized by a small parameter ¢ multiplying the highest
derivative. Suppression of this small parameter reduces the order of
the system, and thus the label of singularly perturbed. Singular
perturbation theory dates back to the 1904 work of Prandtl [1] on
fluid boundary layers; subsequently, applications of perturbation
methods were explored for control design [2—4].

The main contribution of perturbation methods is at the level of
modeling, where it has been used as a model-reduction technique as
well as a means of removing the numerical stiffness in the original
system. In particular, the method of matched asymptotic expansions
reduces the study of the full-order system of equations to the study of

two other degenerate models. The first model captures the dominant
phenomena, and the neglected phenomena is handled in the second.
For the full-order system of the form

x =f(x,z,¢€) ez =1(x,2,¢) 1)
the lower-order models are developed to be the following:
Reduced slow subsystem,

x =f(x,z,¢) 0=1I1(x,2,¢€) 2)

Reduced fast subsystem,

x' =0 z =1(x,2,¢) A3)
where € represents the scalar perturbation parameter, and ’ represents
the derivative with respect to the fast time scale T = (¢ — #,) /€. It has
been shown that the behavior of the complete system of Eqgs. (1) is
constrained within the O(¢) bound of the reduced slow subsystem,
provided the dynamics of the reduced fast subsystem are stabilizing
[5]. One problem evident with the reduced slow subsystem is the
solution of the transcendental or algebraic set of equations for the fast
states z. It is known that there may be many solutions satisfying this
set of equations. The standard singular perturbation model assumes
that, in the domain of interest, these solutions be isolated real roots.

Tracking properties of standard singularly perturbed systems were
first studied by Grujic [6] in 1982. This work laid the foundations of
tracking theory in a Lyapunov sense. Later, in 1988, this work was
extended for nonlinear time-varying singularly perturbed systems
[7]. However, it is assumed that separate controls are available for
both the reduced slow and the reduced fast subsystems, and the
algebraic set of equations have a trivial solution. Christofides et al. [8]
developed robust controller designs for systems with a stabilizable
fast subsystem, and input/output linearizable slow subsystems with
input-to-state stable inverse dynamics. This work considered a
general class of nonlinear time-varying singularly perturbed systems
that have dynamics linear in the fast states. Another approach to
tracking was presented by Heck [9] in 1991. He addressed the design
of sliding-mode controllers for a class of linear time-invariant
systems where tracking of slow variables is desired. For both reduced
subsystems, a sliding-mode controller is designed, and a composite
of these controls is then implemented on the full-order system. The
concept of composite control, or designing separate controllers, for
each of the subsystems and then implementing their cumulative to the
full higher-order system was initiated by Suzuki and Miura [10], and
since then, this concept has been extensively used by researchers for
robust stabilization of systems with time-scale properties [11-13].

In the aircraft literature, the rotational equations of motion
constitute the fast subsystem. These equations are highly coupled
and nonlinear; thus, there exist multiple solutions for the set of
nonlinear algebraic equations. Tracking of slow variables for these
systems is achieved by making two key assumptions. First, the
control surface deflections do not affect the slow states. Second, the
fast variables are the actuators for the slow subsystem. Pioneering
work in this area was published by Menon et al. [14] in 1987.
Reference [14] designed a flight-test trajectory control system using
dynamic inversion. The output variables to be tracked were total
velocity, angle of attack, sideslip, and altitude. Once the desired
angular rates were calculated, the dynamic inversion was applied to
the fast subsystem to compute the aerodynamic control surface
deflections. This work was extended to overactuated systems by
Snell et al. [15]. More recently, the same concept has been employed
to design longitudinal windshear flight-control laws [16] and for
control of generic reentry vehicles [17].

Although all of the systems studied fall under the category of
Egs. (1), different design methodologies have been developed for
varied physical systems, and several different control techniques
have been employed. The control laws developed for a general form
of physical systems assume the existence of a unique solution of the
transcendental equation. For general dynamical system models, the
existence of isolated roots for the fast states is not guaranteed.
Although aircraft literature addresses this problem by employing
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assumptions about the plant model, there is no general methodology
in the literature to date to design tracking control structures for
singularly perturbed systems that are nonlinear, both in the slow and
the fast states. The open-loop study of these systems has been the
focus of the geometric singular perturbation theory [18]. This theory
has been employed in the past for transforming dynamical systems
into singular perturbation form [Eq. (1)] [19,20] and to develop
reduced-order models [21]. Work by Sharkey and O’Reilly [22] used
this approach to design stabilizing control laws for a special of class
of singularly perturbed systems wherein the control appears only in
the fast dynamics. The global nature of the preceding stabilization
results was proved by Chen [23] later on in 1998.

In this paper, the use of geometric methods is extended to a general
class of time-varying singularly perturbed systems that are nonlinear
in both the slow and the fast states. The problem of control for this
general class of singularly perturbed systems is addressed for the first
time in a systematic manner. The paper makes two major contri-
butions. First, this work is not restricted to systems that have a unique
solution for the nonlinear algebraic set of equations of the slow
subsystem. The presence of multiple roots is accounted for by
proving that a center manifold exists for the slow subsystem. This
allows for the incorporation of results from the center manifold theory
that are helpful in obtaining approximate roots of the transcendental
equations. Tracking control laws are designed for both the slow and
the fast subsystems to track the desired reference and computed
approximation, respectively, using acomposite control methodology.
Second, the composite control law is not a function of the scalar
perturbation parameter, nor does it require knowledge of it. This is an
important consideration for systems such as aircraft, where quan-
tifying this parameter can be difficult. The proposed control scheme is
able to guarantee asymptotic stabilization of states for a general class
of nonlinear regulation problems and uniform bounded stability for
the trajectory-following problem. Using Lyapunov theory, a
conservative upper bound €* is derived for the singular perturbation
parameter for which these results hold. From the stability analysis, it
is shown that this approach applies to all classes of singularly
perturbed systems, with tracking properties of standard singular
perturbation models being a special case. The approach and meth-
odology is demonstrated with simulation examples for a nonlinear
generic two-degree-of-freedom kinetic model and a nonlinear,
coupled six-degree-of-freedom F/A-18A Hornet aircraft.

The paper is organized as follows. Section II describes the class of
systems considered and formulates the control problem. Section III
presents the necessary concepts of geometric singular perturbation
theory and motivates this work. Section IV makes an important
observation about the existence of a center manifold for the
singularly perturbed system and details the procedure to compute this
manifold. Section V develops the reduced-order models and for-
mulates the tracking control laws. The proof of stability and main
results are also presented in this section. Numerical simulations are
presented in Sec. VI, and conclusions are discussed in Sec. VII.

II. Problem Formulation

The dynamic system considered is the nonlinear affine in the
control singularly perturbed system, mathematically expressed as

x =f(x,z) + g(x,z)u )

ez=1(x,z) + k(x,z)u (5)

where x € R™ is the set of slow variables of the system, z € R" is the
vector of the fast variables, and u € R” is the set of the control
variable. The singular perturbation parameter satisfies 0 < e < 1
and € € R*. The vector fields f(.), g(.), I(.), and k(.) are such that
the closed-loop system is twice continuously differentiable with
respect to their arguments. The control objective is to control the slow
state to asymptotically track a specified twice continuously
differentiable time-varying bounded trajectory, or x(¢f) — x,() as
t — 00.

Remark 1: The functions g(x, z) and k (x, z) represent the control-
influence terms, while all other terms such as inertial coupling and
gravitational forces are all contained in f(x, z) and I(x, z).

Remark 2: For arigid body, x are the translational velocities while
z represents the angular velocities. The rotational dynamics for a
rigid body contain the nonlinear inertial coupling terms. The function
I(x, z) captures this nonlinearity in the fast states.

III. Background: Geometric Singular
Perturbation Theory

Singular perturbation theory is a tool used to obtain the reduced-
order approximations of the full-order equations of motion, which
are difficult to analyze. The theory is valid so long as the parameter €
remains sufficiently small and the time-scale behavior is preserved.
The method of matched asymptotic expansions [24] and its variation,
the method of composite expansions [24], have been the foremost
methods employed to develop these reduced-order models. The
alternative geometric approach describes the motion of the full-order
system using the concept of invariant manifolds. Both approaches
produce the exact same reduced-order models but with different
assumptions about the system. Asymptotic methods assume that the
dynamical system possesses isolated roots, while the geometric
approach is more general and takes into consideration multiple
nonisolated roots of nonlinear systems.

To introduce the necessary concepts of geometric singular
perturbation theory for an open-loop dynamical system, consider the
nonlinear autonomous system:

x = f(x,z) 6)
ez=1(x,z) @)

Note that the following results also apply to nonautonomous
systems. Equations (6) and (7) can be rewritten in the fast time scale
T=(t—ty)/€as

x' =ef(x,2) ®)

z' =1(x,z) )

The independent variables ¢ and 7 are referred to as the slow and
the fast time scales, respectively, and Egs. (6-9) (referred to as the
slow and the fast systems, respectively) are equivalent whenever
€ # 0. First, the system is studied for € = 0. The fast system reduces
to n dimensions with variables X as constant parameters, producing
the reduced fast subsystem,

x' =0 (10)

z' =1(x,2) an

On the other hand, the order of the slow system reduces to m
dimensions and results in a set of differential-algebraic equations,
producing the reduced slow subsystem,

x = f(x,z) (12)

0=1I(x,2) (13)

The reduced slow system appears to be a locally flattened vector
space of the complete slow system. Thus, the set of points (x,z) €
R™ x R" is expected to have a C" smooth manifold M, of dimension
m inside the zero set of function I(.), provided the functions f(.) and
1(.) are assumed to be C".
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Assumption 1: The functions f(x, z) and I(x, z) are sufficiently
smooth so that C" with r > 1.

The requirement to be continuous and at least once differentiable
assures smoothness of the manifold M. The flow on this manifold
evolves as

x = f[x, hy(x)] (14)

where h((x) is the solution of the algebraic part [Eq. (13)] that
defines the manifold,
Moz =hy(x); x € R™, zeR" (15)

When viewed from the perspective of the reduced fast subsystem,
the manifold M is the set of fixed points [x, h(x)]; therefore, M, is
trivially invariant. If every fixed point [x, hy(x)] of the reduced fast
subsystem is assumed to be hyperbolic, then starting from arbitrary
initial conditions, the flow will settle down exponentially fast onto
the manifold, after which the flow evolves according to Eq. (14).
Equivalently, the flow normal to the manifold is faster than that
tangential to it. Such a manifold is said to be normally hyperbolic.
Furthermore, a normally hyperbolic invariant manifold has local, C"
smooth stable, and unstable manifolds: W5, (M) and WY_(M,).
These manifolds are unions over all (x) in M, of the local stable and
unstable manifolds of the reduced fast subsystem’s hyperbolic fixed
points [x, hy(x)].

To show these concepts, consider the following example. Let

X, =—x Xy = —x, € =—z (16)
so that the reduced slow subsystem is
X =—x X, = —X, —z=0 a7
and the reduced fast subsystem is
x =0 X =0 7 =—z (18)

The solution of the algebraic equation (17) is z = 0, which is also
the fixed point of Eq. (18). The invariant manifold is given by
My: 7z =0, which is the complete x,-x, plane. The origin is the
stable hyperbolic equilibrium of the reduced slow subsystem, so any
trajectory starting on the manifold approaches the origin in forward
time, as seen in Fig. 1. Studying the reduced fast subsystem suggests
that, for any point with nonzero initial condition z(0), the flow
approaches normal to the manifold. Intuitively, one may conclude
that, for initial conditions not on the manifold, the reduced fast
subsystem describes the transition to the manifold, after which the
system evolves according to the reduced slow subsystem (seen in
Fig. 2). Furthermore, since all points (x;,x,,z) approach the
manifold at an exponential rate forward in time, the complete space is
the stable manifold WS (M,).

For the full-order system, similar inferences can be made. The
presence of € in Eq. (7) indicates that the fast variables grow relatively
faster than the other states of the system. If their open-loop system is
stabilizing, these states quickly settle down to their equilibrium. The
other variables continue to evolve in time with the fast variables fixed
by an equilibrium hypersurface. Mathematically, 3 #*: t* > ¢, after
which the solutions x(¢, €) and z(¢, €) lie on a distinct m dimensional-
invariant manifold M.:

M z=h(x,¢); x € R™, z e R" (19)

For the system of Egs. (16), the invariant manifold continues to be
the x;-x, plane. In addition, the family of lines parallel to the z axes
still describe the flow normal to the manifold. Consider Fig. 3 to
study this behavior. To generate this figure, € was chosen to be 0.05.
For a fixed initial condition, the flow evolves in two parts: one
component along the manifold M,, which is governed by the
reduced slow subsystem, and the other component in the normal
direction, for which the flow is governed by the reduced fast
subsystem. Points that are already on the manifold are seen to evolve
similar to the flow sketched in Fig. 1. Thus, the reduced-order models

0.5

-0.5

g 0.5 0 0.5 1

X

Fig. 1 Reduced slow subsystem.

i
4 4 1
Fig. 2 The reduced slow and the fast subsystems.

provide good insight into the behavior of the full-order system. It is
apparent that if the reduced fast subsystem were unstable, then an
initial condition not on the manifold would move farther away in
time. For the example considered, the manifolds M, and M, were
obtained to be identically equal, but this is not generally the case with
nonlinear systems.

The geometric constructs discussed previously are formal
statements of Fenichel’s persistence theory [18]. First, the following
assumptions about the slow system are made:

Assumption 2: There exists a set M, that is contained in
{(x,2): I(x,z) =0}, such that M, is a compact boundaryless
manifold.

Assumption 3: M is normally hyperbolic relative to the reduced
fast subsystem and, in particular, it is required that for all points
z € M,, there are k (respectively, /) eigenvalues of D,I(0, z) with
positive (respectively, negative) real parts that are bounded away
from zero, where k + [ = n.

The following theorem from Fenichel [18] is for compact
boundaryless manifolds. Let the slow system satisfy Assumptions 1,
2,and 3. If € > Ois sufficiently small, then there exists a manifold M,
that is C"~! smooth locally invariant under the fast system and C'~!
O(e) close to M. In addition, there exist perturbed local stable and

Fig. 3 Flow of system of equations (16) when € # 0.
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unstable manifolds of M., and they are C" O(¢) close, for all r < oo,
to their unperturbed counterparts.

IV. Center Manifold and Computation

Fenichel’s theorem [18] is a powerful tool to study the behavior of
stiff dynamical systems. It asserts the presence of an invariant
manifold M, that is O(e) close to M,, but it does not provide the
procedure to compute the manifold. Since M, is invariant for some
t > t*, the solutions follow the curve specified in Eq. (19).
Differentiating this expression with respect to 7,

oh .

Z=—X
ox

(20
and multiplying Eq. (20) with ¢ and substituting for x and z from
Eqgs. (6) and (7) results in

63—hf[x,h(x,e)] =[x, h(x,€)] 2n
ax

Equation (21) is called the manifold condition. Note that
substituting € = 0 in the manifold condition returns Eq. (13), which
is satisfied by the manifold M. To employ Fenichel’s results [18],
the manifold condition needs to be solved. Exact computation is
impossible, since solving this condition is equivalent to solving the
complete nonlinear system. One approximate approach is to
substitute a perturbation expansion for h(x, €) = hy(x) + ¢h;(x) +
O(€?) into Eq. (21) and then solve order by order for h(x, €). If the
domain of interest is known, then the implicit function theorem may
be employed. It is usually the inverse problem that is encountered,
which is to find h(x, €) as a smooth function of its arguments. In this
paper, the approach proposed in [25] is used, and the following
discusses its computation procedure.

The computation procedure proposed in [25] has been laid out for
dynamical systems with center manifolds. For completeness, the first
step is to check whether the manifold M, is the center manifold of
the singularly perturbed system. To study this behavior, rewrite the
fast system using the technique called suspension [26] as

x' = ef(x,2z) (22)
€=0 (23)
z' =1(x,2) (24)

Assume that the origin is the fixed point of the preceding system
that is £(0,0) =0 and [(0,0) = 0. Then, the perturbed system
obtained by linearizing these equations about the origin [e = 0, x =
0, h(0,0) = 0] is written in compact form as

AW = Fw + F,z Az =Lz + L\w 25)

where w = [x, €]”, Aw, and Az denote the perturbation quantities,
and F, F, L, and L, are constant matrices of appropriate size. If all
eigenvalues of F have zero real parts while all eigenvalues of L have
negative real parts, then the manifold M, is precisely the center
manifold, and it spans the generalized eigenvectors associated with
eigenvalues with zero real parts. This manifold is defined for all small
values of the slow state x and the perturbation parameter €. The
requirement on eigenvalues of F' supports the existence of time scales
in the system, for if the eigenvalues were nonzero, then all states
would be fast variables, and the system is not singularly perturbed.
This suggests that the eigenvalue restriction on F is always satisfied
by systems with the multiple time-scale property. The other
requirement of negative eigenvalues of L is to ensure that the
trajectories not on the manifold approach it in forward time.

From the preceding analysis, h(x, €) is known to be the center
manifold. If the origin is the fixed point of the linearized system, then
the theorem from [25] asserts that one can approximate h(x, €) to any

degree of accuracy. For functions ¢: R” x R — R", which are C"~!
(r defined as in Assumption 1) in the neighborhood of the origin,
define

(MP)(x.) = o2 flx,o(x - lx.6x. ] (6)

Note that, by Eq. (21), (Mh)(x,€) = 0.

The following is the theorem from [25]. Let ¢: R" x R — R”
satisfy ¢(0,0) =0 and |(M¢)(x, €)| = O[C(x, €)] for |x| — 0 and
€ — 0, where C(.) is a polynomial of degree greater than one. Then,

lh(x,€) — p(x, €)| = O[C(x, €)]

This theorem implies that an approximate function ¢(x, €) can be
determined for small values of x and €. The condition ¢(0, 0) = 0 is
to ensure that the origin remains the fixed point. To demonstrate the
procedure, consider the example from [25]:

X=xz+ax® +bz*x  e=—z+cx*+dx*z  (27)

Linearizing this system about the origin,

Ax' =0 A€ =0 A7 =-1 (28)
It is seen that the system possesses a center manifold z = h(x, €).

To approximate £, define

(Me)(x,€) = e%[xq&(x, €) + ax® + bg*(x, €)x] + ¢(x, €) — cx?
— dx*¢(x, €) (29)

Hence, if ¢(x,€) = cx?, then (M¢)(x,e) = O(|x*| + |ex*|), and
from the preceding theorem, A(x, €) = cx> + O(]x*| + |ex*|). Since
the fast subsystem is stabilizing, geometric singular perturbation
theory says that stability of the complete system can be analyzed by
studying the flow on the manifold [Eq. (14)]:

x=(a+c)x> + bex’ + O(|x°| + |ex’]) (30)

V. Control Formulation and Stability Analysis

The central idea is the following. If the reduced fast subsystem is
stabilizing about the manifold M, the complete system dynamics
remain O(€) close to the reduced slow subsystem. This fact is
employed to develop a stable closed-loop system. It is proposed that
two separate stabilizing controllers be designed for each of the
subsystems and their composite be fed to the complete system. It is
shown that, in fact, this composite control uniformly stabilizes the
complete system. This approach has been shown in the literature to
guarantee asymptotic stability for singularly perturbed systems with
unique manifolds M [10]. In the following subsections, control
laws for a general class of nonlinear singularly perturbed systems are
formulated, and closed-loop system stability is analyzed.

A. Control Law Development

The objective is to augment the two time-scale system with state
feedback controllers such that the system follows a specified
continuous twice differentiable bounded trajectory x,(f). The first
step is to transform the system [Eqs. (4) and (5)] into a non-
autonomous stabilization problem. Define the error signal as
x(t) = x(t) — x,(¢). Then,

)L(:f(i+x,,z)—|—g(i—|—x,,z)u—f{, 31
ez=1X +x,,z) + k(X + x,,z)u 32)

The objective is to seek the control vector of the form u=
u, + uy, where
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u, =T(x.x,.%,) (33)
and
u,=TI,(x,zx,,X,) (34)
Substituting the controls into Egs. (31) and (32) produces

X =f&X+x,.2) + g& +x,,2)[[,(X. X,. X,)
+ Ff(i,zsxrvi(r)]_i(r (35)

ez =1(X +x,,2z) + KX + x,, D)[[|(X, X, X,) + ['4(X, Z,x,,X,)]
(36)

Assume that the right-hand side of Egs. (35) and (36) is C?; that is,
the vector fields satisfy Assumption 1 with » = 2. From Fenichel’s
theorem [18], it can be concluded that there exists a manifold

M z=h(x¢x,,X,) 37
that satisfies the manifold condition,

. dh 4 oh

ot 0x
+x,.h(x, ¢, x,, %,)]T(X, X,,X,) + k[X

+x,,h(x, e, x,, X,)|T'[X, h(X, €, X,, X,), X, X, ] (38)

X =I[X + x,.h(X, €.x,, %,)] + k[X

Note that the manifold is time dependent, since the system under
consideration is nonautonomous due to the time varying X,(7).
Define the error between the fast states and the manifold M, as
z=1z2—h(X, ex,,X,).

The transformed system with the origin as the equilibrium is
expressed as

X=f[X +x,.Z +h(X.€x,.%,)] + gk +x,,7
+ h(i9 €, Xr’ Xr)]ry(i’ Xr’ Xr) + g[fi + Xr? i
+h(X € x,.%)]/[%Z +h& €x,.%,),x,. %] - %, (39

ez=I[X +x,.Z+hX. ex,%,)]+k[X+x,,Z
+ h(x,¢,x,, x,)|T(X, X, X,) + K[X +X,,Z
+ h(i? €, X, Xr)]rf[iv 2 + h(i’ €, X, ’.(r)9 X, Xr]

_ o ohg (40)

Note that the error Z = 0 when the manifold condition is satisfied.
It is known that the exact manifold h(X, ¢, x,, X,.) is impossible to
compute. Let ¢(X, X,, X,, [';) be an approximate manifold obtained
using the procedure presented in Sec. IV. The approximate manifold
is chosen to contain terms independent of ¢, similar to the example
considered at the end of Sec. IV. Define

- . . a¢p ¢ =
(M) (x,¢€,%x,,x,, T, Ty) = 65 + €£X
- l[i + X, ¢(i7 X, er Fs)]
- k[Si + X, ¢(i7 X, Xr? FJ)]Fs(iv Xy Xr)

- k(i + Xy ¢(i7 X, Xr? FA))Ff(i’ ¢(i7 X, Xr? FS), Xy Xr) (41)

and let (M¢)(t,X,€) = O[C(X, €, X,, X,)], which depends on the
choice of controls I' and T',. Furthermore, the following is assumed:

Assumption A: The choice of controls T’y and T', leads to
OC(x,e=0,x,,%x,)]=0.

With the preceding choice of ¢(X, X,., X,., '), the exact manifold is
given as

h(x,e.x,.%,) = ¢(X. x,.X,, T;) + O[C(X. €, X, X,)]

Substituting the approximate expression for the manifold into
Egs. (39) and (40),

X=HX+x,.Z+ ¢X.x,.%,.T,) + O[C(X.e.X,.%,)]} + g{X
+x,.Z+ ¢(X,x,.x,,Iy) + O[C(X, €, x,. X))} (X. X,, X,)
+g{X +X,.2 4+ ¢(X.x,.X,. T)

+ O[C(X,e,x,,x,)}T(X,Z,Xx,.X,, [) — X, 42)

eZ=U{X+x,.72+ ¢p(X.x,.%,.T,) + O[CK,€,X,.%,)]} + k{X
+X,,7+ ¢(X,X,.%,,T,) + O[C(X, €, %,, %, )T (X, X, X,)
+k{X+x,.Z2+ ¢(X.x,.%,.T,)
+O[CR, €, x,, %)) /(X,Z,X,.%,, )

Hp+O[CK, e.x,.%)]}  Hp+O[CX, ex,.%X,)]} =
—€ —€ = X
ot 0x

(43)

Note that I'; is a function of Iy due to the choice of
o(X,x,,X,, ;). The reduced slow and fast subsystems for the
system of Eqs. (42) and (43) are obtained by substituting € =0,
resulting in the reduced slow subsystem,

X=X +x,7+ ¢(X, x,. %,, [,)] + g[X +x,, 2
+ (X, X, %,, TIN, (R, X, X,) + g[% + X, 7
+ (X, X, %,, TITH(R, 7, X, %,, T,) — X, (44)

0=IX+x,.2+¢(X.x.X, )] +K[X+x,,2
+ ¢(x.x,, X, . DOIN(X. X, X,) + K[X +x,.2
+ ¢(i*xrvxr’Fs‘)]Fj'(ivivxrﬂxrvrs) (45)

and the reduced fast subsystem,

x'=0 (46)

7 =1I%+x,.7+¢X x,.%,.T,)] + k[X +x,.7
+ (X x,. %, . THIN(X. x,. X,) + K[X + X,.Z
+ ¢(§’erxr7 FS)]Ff(i,i,Xr,).(,, rs) (47)

In general, the composite control approach first computes the
control I'y required to maintain reduced slow subsystem stability by
assuming that the fast states lie upon the manifold and I'; = 0. In the
next step, the control I’y is designed to satisfy two conditions:
guarantee uniform convergence of the fast states onto the manifold
and remain inactive when the fast state remains on the manifold. The
second condition is implemented to avoid affecting the conclusions
drawn about the reduced slow subsystem stability. In the proposed
control scheme, the second condition is avoided by designing I',
ahead of I'. Thus, design T's(X, Z, X, X,, I';) as a function of I,
such that Eq. (47) is transformed into the closed-loop reduced fast
subsystem,

i = Li(X.7.%,.%) + K (D) (48)

such that —L¢(X, 0, x,., X,) + K(0) = 0. With this choice of I'; and
assumptions about vector fields Ly and Ky, Z =0 becomes the
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unique root of Eq. (45). Therefore, the reduced slow subsystem
reduces to

X =f[X + x,, (X, X, X,, [,)]
+ g[& + x,, (X, X,. X,, [T, (X, X,., X,)
+ g[X + X,, (X, X,, X, [)ITH(X, 0,%,,%,.T,) =X, (49)

The only unknown in Eq. (49) is I',; therefore, it may be designed to
transform the reduced slow subsystem into the closed-loop reduced
slow subsystem,

%= —F,(%.x,.%,) + G,®) (50)

and exact forms of I'y(X,Z, x,,X,), ¢(X,X,,X,), and correspond-
ingly C(X, €, X,, X,.), can be determined through Egs. (48) and (41),
respectively.

Remark 3: In the reduced subsystems obtained, zZ =2z—
¢(X,X,,X,) by Assumption A. Thus, at the implementation level,
the control I'; is a function of known quantities.

The complete closed-loop system is obtained by rewriting
Eqgs. (42) and (43) as

X =f[X +x,. p(X. x,. X,. T))] + g[X
+ X, ¢(X, x,. X, T)II (X, X,.. X,) + g[X
+X,, p(X, X,., X,, [)IT,(%, 0, %,, %,, ) — %, + f[X
+ X, 2+ ¢(X, X, X,, T)] — £(X + x,., [, X, %, T))]
+ {gX +x,.Z2 + ¢(X, x,, X, T,)] — g[X
+ X, ¢(X. X, X,, T)IT,(X, X,. X,) + g[X + X,.Z
+ ¢(X, X, X,, TIT/(X, Z, X,., X, T,) — g[X
+ X, 0(X, X, X, [)IT4(X, 0. x,.%,, Ty) +£{X +x,,2
+ ¢(X.X,.%,.T,) + O[CK.€.x,.X,)]} — f[X + X,.7Z
+ ¢(X, X, X,. T)] + (@{X + x,.Z + (X, X,.%,, )
+ O[CX.e.x,, %)} — g[X + Xx,.Z
+ ¢, x,, X, TOPT (X, x,. X,) + (X + x,,Z
+¢(X. x,,X,. ) + O[C(X, €,%,,X,)]} — g[X +X,.,2
+ ¢(X. X, X,, [ODIf(X, 2, %,. X, Ty (51

eZ=IX+x,. 72+ ¢X.x,.%,.T,)] + K[X +X,.Z
+ (. X,.%,. T (X, X,. X,) + K[X + X,.Z
+ ¢(X. X, X, T)ITH (R, Z,X,, %, T) + HE + X, Z
+¢(X.X,.%,.T,) + O[CR,e.x,.%,)]} — [[X + X,.Z
+ ¢(X.X,.%,.T)] + (K{X +X,.Z + ¢(X.X,.X,. )
+O[C(X.€,%,.%,)]} —k[X +X,.Z
+ (XX, %, TODT, (R, X, %,) + (K{X +x,.Z
+¢(X.%,.%,.T,) + O[C(X.€,x,.%,)]} —k[X +X,.Z
+ (X, x,. X, FODTr(X, 2, %, %, )

| M+ OCR ex %) Dip+OCE €%, %)} ¢

o % (52)

Using the closed-loop reduced subsystems of Eqs. (48) and (50),
Egs. (51) and (52) become the closed-loop complete system,

X =-F,(X,x,.%,) + G,(X) + f[X + x,.Z + $(X.X,,%,. ;)]
—f[X + x,. p(X.X,.X,. )] + {g[X + x,.Z
+ ¢(X, X, X, )] — g[X + x,, (X, x,., X,, [YIT (X, X,., X,.)
+ g[X +x,.Z + ¢(X, X, X,, T)IT(X, 2, X,., X,., T) — g[X
+ X, $(X, X, X,, TITH(X, 0, %, %,, T,) + £{X + x,,7
+ ¢(X.X,, %,.T)) + O[C(X.e,x,.x,)|} — f[X +X,. Z
+ (X, X, %,.T)] + (&8{X + x,.Z + p(X. X,.%,.T)
+ O[C(X.e.%,. %)} — g[X + X,.Z
+ (X X, X, T)DT (X, X, X,) + (g{X +X,.2
+ ¢(X.X,. %,.T)) + O[C(X.e,X,.%,)|} — g[X +X,. Z
+ (X, x,. %, TODI,(X, Z, %, X, T) (53)

€2=—L¢(X.Z.X,.X,) + K¢(Z) + X +X,.Z + p(X.X,.%,.T,)
+O[CK,e.%,. %)} —I[X +X,.Z+ $(X.X,.X,.T,)]
+ k{X+x,,2+ ¢(X.x,,X,,T,) + O[C(X,¢,X,,X,)]}
—K[X+X,.Z+ ¢(X.X,.%,, [T, (X.X,.%,) + (k{X
+X,.7+ ¢(X.X,.%,.T,) + O[C(X,€.X,.%,)]} — K[X
+X,,7+ (X, X,. %,, T)DT/(X,Z,X,, %, T,)

_ e+ OCR.ex, %)} 0ip+ OICE.€.x,.%,)]} -

a1 0% oD

Remark 4: If ¢(X, X,, X,) is the unique manifold for the complete
system, then the terms of O[C(X, €, X,, X,)] are identically zero, and
the closed-loop complete system in Eqs. (53) and (54) takes the form
as in [27,28], which has been proven to be closed-loop stable.

B. Stability Analysis
1. Tracking Problem

The following theorem summarizes the main result of the paper.

Theorem 1: Suppose the controls u, and u, are designed
according to Eqgs. (48) and (50) and Assumptions A-I hold. Then for
all initial conditions, (X, Z) € D, x D, the composite control u =
u, + u, uniformly stabilizes the nonlinear singularly perturbed
system in Eqgs. (4) and (5) for all € < €*, where €* is given by the
inequality equation (68), and the error signals X(7) and z(f) are
uniformly bounded by Egs. (69) and (70), respectively.

Proof: Closed-loop system stability is analyzed using the
composite Lyapunov function approach [29]. It is required to prove
that the closed-loop system behavior remains close to the closed-loop
reduced slow subsystem. Suppose that there are Lyapunov functions
V(r,X) =1%X"% and W(t,z) =12z for the closed-loop reduced-
order models (50) and (48), respectively, satisfying the following
eight assumptions:

B) V(¢,X) is positive definite and decrescent; that is,

alIXIP = V(. %) < oo X%,

XeD, CR" (55

O

v U . . .
—[-Fs(%,x,,%,) + G4 (X)] < — Z—b|Ix|, >0,
8;([ (X.x,.x,) X)) =—a X7 =bylIX[l, o 56)
b, >0
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D) There exists a constant 8, > 0, such that
v . - - . - - .
B_i{f[x + X,,Z + ¢(X’ X,y Xps Fr)] - f[X + X, ¢(Xv X,y X, Fv)]}
v . - - . -
+ g{g[x + X, Z + ¢(X’ X5 Xy FI)] - g[X

98X R TOREL (R X, %) o0 (gl +x,.

+ o(X.x,. X, [P (X, Z,x,.x,, T) — g[X

+ X, ¢(X. X, X, THIN(X, 0. x,.. %, T} < ByIx]|llz]  (57)
E) There exist constants 8, > 0, 83 > 0, and 84 > 0, such that

%(f{i + X2+ ¢(X. X, X, ) + O[C(X, €. x,., )]} — f[X

~ - . v ~
+ X, Z + ¢(X’ X, X,y Fr)]) + E (g{X + X, Z
T ¢(%.X,.%,.T,) + O[CK, €, %,.%,)]} — g[k +x,,7
- . - . w ~
+ ¢(X, Xrs X, Fs)])FS(X, X Xr) + g (g{X +X,,Z

+¢(x.x,, X, ) + O[C(X. €,x,. %)} —g[Xx +x,.2
+ ¢(i’ Xps ).(rﬂ Fr)])rj(iv i’ Xy ).(r* FY) = eﬁZHiHZ
+ eBs X111zl + eBalx| (58)

F) W(t,z) is positive definite and decrescent scalar function
satisfying,
alz]* =W(t.2) <clzl’,  zeD. CR (59
G

ow

g[—Lf(i, z.x,.%,) + Ki(D)] = —o|z]*, 2, >0 (60)

H) There exist scalars 85 > 0, B¢ > 0, and ; > 0, such that
ow - - . - . -
B_i(l{x + X,z + ¢(X7 X Xy, Fs) + O[C(X’ €, X, Xr)]} - l[X
- - . aw ~

+ X,,Z + ¢(X’ X5 Xps FA)]) + E(k{x + X,,Z

+ ¢(i’ Xps )'(rﬁ Fv) + O[C(i’ €, X,, Xr)]} - k[jZ + Xy, z

9%, & TODELE x,%,) 0 (kiS4 x,.7

Z
+ ¢(X.x,.X,.I)) + O[CKX.€.x,.X)[} —K[X +x,.,2

+ ¢(X, X, %,, TODT(R, 7, X, X,, T,) < €5z
+ eBslxll1z]l + Bz (61)

I) There exist constants g > 0 and B¢ > 0, such that

ow [ 0o + OICK €. x,. %)}

0z ot
. Mo + O[CX, & X, X,)]} 3

+ 3%

] = ePslizll + epolIxIlllz]l  (62)

Remark 5: Assumptions B, C, F, and G are conditions for
asymptotic stability of closed-loop reduced-order models. The
constant b; in Assumption C depends upon the bounds of the
specified trajectory x,.() and its derivative X,. If the control T is
designed to maintain asymptotic stability of the closed-loop slow
subsystem, then b; = 0. Additionally, Assumptions D, E, H, and I
are interconnection conditions obtained by assuming the vector fields
are locally Lipschitz. The constants 8, 8, and B¢ appear due to the
time-varying nature of the manifold and depend upon the bounds of
x,(#) and its derivative x,. The constant 83 also depends upon the

derivative X,, which is known to be bounded by the choice of the
reference trajectory. Consider the Lyapunov function candidate,

w(t,%,7) = V(1,%) + W(t, 7) 63)

for the closed-loop system of Egs. (53) and (54). From the properties
of V and W, it follows that v(z,X,Z) is positive definite and
decrescent. The derivative of v along the trajectories of Egs. (53) and
(54) is given by

_ve 1w
X ez

(64)

v

Substituting Assumptions B-I into Eq. (64),
< =0 K] = by [IX[L + BiIXIZI + B lIX]1> + €5 X 1z]
+ eBalx|
—% 1ZI1* + Bslizll* + BslIXIl Nzl + 8711zl + Bsllz]
+ Bollx[l1z]l (65)
Collecting like terms

V< —(a — eB) K[> — (by — BRI + (Bi + €Bs + Bs
+ Bo) X[zl

~ (%= 81z - -, - ponial (66)
Rearrange Eq. (66) to get

Mg T D — e 3(Bi+€Bs + Bs + Bo)
VE[nzn} Wb bt ot B —- (%)

X[HX”} — [IX [l {d(er; — eB)[II| — (€Bs — b)}

Izl
~ o ~
~tala(%2-p )i - @+ p0f. 0<a<t oD
The matrix becomes negative definite when
2 o2 1 2
(1 —d)*(a; —€Ba) P Bs <Z(ﬂ1 +efs + Bs + Bo)* (68)

Thus, there exists an upper bound €* and upper bounds on the errors
X, and Zy,

€y — b,

X = d(a; —€B) ©
~ B7 + Bs
= 70
= aE = B 7o
for which
V=<0 (71)

From the Lyapunov theorem, it can then be concluded that the
closed-loop signals X and Zz are uniformly bounded for all initial
conditions (X, Z) € D, x D,. Consequently, the control vector u =
u, +u, is bounded. Furthermore, since the trajectory x,(7) is
bounded, the manifold h(x, z, x,, X,) and the closed-loop signals
x(#) and z(¢) are bounded.

2. Special Case: Regulation Problem

The following theorem summarizes the main result for the
stabilization problem.
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Theorem 2: Suppose the controls u, and u, are designed
according to Egs. (48-50), and Assumptions A-I hold with X = x
and Z = z. Then, for all initial conditions (x,z) € D, x D_, the
composite control u =u, +u, asymptotically stabilizes the
nonlinear singularly perturbed systems in Eqgs. (4) and (5) for all
€ < €}, where €} is given by the inequality equation (68) with d = 0.

Proof: Note that, in this case, the manifold h(x, €) is not time
varying, and X = x and z = z. Since this problem is autonomous, the
decrescent conditions on the Lyapunov functions V and W can be
relaxed. The constants B, 87, and 85 in Assumptions E, H, and I are
all equal to zero, and the constant b; = 0, since X, = 0 and x, = 0.
With these modifications, Eq. (67) is modified as

77| @B 2Bt ey ot fo)
<
V= [||Z||i| 1(B1 + €y + Bs + Bo) _(04?2_135)

[llxll}
x (72)
Izl

Therefore, there exists an €; such that
V<0 (73)

where € satisfies the inequality equation (68) with d = 0. O

Remark 6: Theorems 1 and 2 depend upon the approximation of
the invariant manifold, leading to local results. If it were possible to
obtain the expression of the exact manifold, these results would be
valid globally.

Remark 7: Fenichel’s theorem [18] implies that the behavior of the
complete nonlinear system remains close to the reduced slow
subsystem if the reduced fast subsystem is stable. Theorems 1 and 2
state the same result for the closed-loop singularly perturbed system.

VI. Numerical Examples

A. Purpose and Scope

The preceding theoretical developments are demonstrated with
simulation. The first example is a generic planar nonlinear system.
This planar example enables the study of the geometric constructs,
which are generally difficult to visualize in higher-dimension
problems. A step-by-step procedure of controller development is
detailed for the system to track a desired slow kinetic state. A
comparison between the manifold approximation and the attained
actual fast state is made. The closed-loop results are studied for a
sinusoidal time-varying trajectory and the regulator problem. The
second example develops control laws for a nonlinear F/A-18A
Hornet model. The objective of this example is to test the
performance of the controller for a highly nonlinear, two time-scale
system. It is required to perform a turning maneuver while
maintaining zero sideslip and tracking a specified angle-of-attack
profile.

B. Generic Two-Degree-of-Freedom Nonlinear Kinetic Model

The fast dynamics are modified to include an arbitrarily chosen
quadratic nonlinearity in the fast state, and a pseudocontrol term with
unit effectiveness is introduced. For this example, x € Rand z € R
represent the slow and the fast states, respectively. The control u € R
is developed to track a desired smooth trajectory x,.(f):

xX=—x+x+05z4+u (74)

eZ=x—(x+Dz+>4+u (75)
The value € = 0.2 is retained in the modified model [26].

1. Controller Design

Define the errors x =x —x, and 7=z — h(X,¢, x,,x,), and
transform Eqgs. (74) and (75) into error coordinates equivalent to
Egs. (39) and (40):

F=—@F+x)+ GE+x +05)[E+h(F e x. 1)
—% + T, + T, (76)

€£=F+x)—F+x +DE+hEex,. i)
+ 4+ AR e x,. 1)+ T, + T a7

Rearrange Eqgs. (76) and (77), dropping arguments of h:

X=—X+%h() +0.51() —x, + x,h() + (X + x, + 0.5) — %,
+,+ T (78)

€E=—(F4+x+DI+2+2h()+i+x —GE+x + Dh()

oh o
) _ dh Oh:
+ RO+ T+ Ty —eg —eaex (79)

Comparing with Egs. (39) and (40),
() = =X +xh() + 0.5h() = x, +25.h() + (X +x, +0.5)2
g()=1
I()=—GF+x, 4+ D)+ 22+2Zh() + X+ x,— (F+x, + Dh()
+ h(.)?
k() =1 (80)

Let ¢(X,x,,x,,[,) be the approximate manifold. Define the
manifold condition:

(M¢)(F, x,,%,, T, Ty) = eaa—¢ NPLE S X, + (F 4 x,)0(.)
t 0x

+¢()—¢() —T, - T (81
Select
o, x,, x,, ) =x+x,+ T (82)
so that

0 09 -
(M) £ T = €50 + €583+ (F 4 x) G5, +T)

—¢() —T; (83)
and

@ [C(J’h €, X, xr)] = (M(p)(jév Xps )'Cr» Fs)

To design the control I';, develop the reduced fast subsystem
equivalent to Egs. (46) and (47):

X =0

7=—GF+x, +DZ+2+27¢() + 3+ x,— (& +x, + Dp(.)
+¢() + T, +T; (84)
Design

Ty =—A;Z—22¢() + (F+x, + () —F—x, —¢* — T, (85)

where A, is a feedback gain. Then, the closed-loop reduced fast
subsystem becomes

T==F+x+1+A)7+ 7 (86)

Comparing with Eq. (48),
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L,()=G+x+1+4p7 K= (87

The next step is to determine the control I';. Develop the reduced-
order slow subsystem equivalent to Eqs. (44) and (45):

X=—X+ip() +0.5¢6() —x, + x,0() + X+ x, + 0.5)7 — ,
+ I + I‘f (88)

O=—GF+x, + DI+ +2%p() +5+x,— F+x, + Do)
+¢()+ T, +T; (89)

Substituting for I'; from Eq. (85) in Eqgs. (88) and (89),

¥= 28+ ip() +0.50() — 2x, + x,0() + (X + x, + 0.5)Z
— %, —¢()? = 22¢() + F +x, + Dp() — Az (90)

0=—GF+x,+1+Ap7+72 ()
Since Z = 0 is the root of the algebraic solution, the reduced slow

subsystem is obtained as

=28+ ip() + 0.5¢() — 2x, + x,p(.) — %, — p(.)?
+ (X +x,+ Do(.) 92)

Substituting the expression for ¢(.) from Eq. (82) in Eq. (92),
¥=-2%F—2x,—% + Qi+ 1.5+ 2x)(F+x, +T,)
—(F+x+1I) 93)
Design I, as
[, =—%—x, +x —AX (94)

where A is the feedback gain. Thus, the resulting closed-loop reduced
slow subsystem is

¥=—(2—2%, + 2Ax, + 1.54 — 2A%,)% + (—A2 — 24)7>
+ (=2x, + 0.5%, + 2x,x, — x2) 95)

where A is the feedback gain. Comparing Eq. (95) with Eq. (50),

F,() = (2 — 2, + 2Ax, + 1.5A — 2A%,)% — (=2x, + 0.5%,
+ 2-xrjcr - X%)

G,() = (=A% = 24)7? (96)

Note that this control only guarantees bounded tracking for the
slow subsystem. To implement the control laws, substitute for I,
from Eq. (94) into Eq. (82):

¢ =x, — AX o7
and use Eqgs. (85) and (97):
[y = (=A% — A)X? + X(%, + 2Ax, — Ax,) + 2AXZ7—2(2%, + A;)
. (98)

Recall that these controllers are designed using the reduced-
order subsystems Z = z — ¢(.), where ¢(.) is given by Eq. (97).
Then, the control laws I'; and T’y can be expressed in original
coordinates as

I=—x+x—A(x—x,) (99)

r,= (=A% —A)(x —x,)% + (x — x,) (%, + 24%, — Ax,)
+2A(x — x,)[z — ()] — [z — p()](2%, + Ay) — 7 + x,%, (100)

Using the manifold condition equation (83),

(MP)(E 3,5, T = €22 4 2L R (Fx, 8) + (D) (10D
Thus, by the choice of controls Iy and T, O[C(e=

0, % x,,%,)] = 0.

2. Results and Discussion

Case 1A: Controller performance for tracking a continuously time-
varying sine wave of 0.2sin(0.27) is presented in Fig. 4. The
feedback gains chosen are A =3 and A, = 1. The domains of the
errors are D, =[—03 03] and D.=[-1.5 1.5]. Several
constants in Assumptions B—I are computed as «; = 1, b; = 0.26,
Bi=14, B, =30, B3=0, B,=0.686, ay=1, Bs=1.96,
Be =250, B; =0.5096, By = 3.778, and By = 250. These values
and a choice of d =0.3 results in €* =2000 > 1. From the
simulation results, it is seen that the system response is bounded for
all time. Additionally, for simulations with € = 0.2, the bounds

o
N

X (Slow State)
o

.

o

N
T

0 10 20

30 40 50 60
Time(s)

z (Fast State)

Time(s)

-1

. ‘
3°r;__/_\_/\
j s
£
c
o
o

-2 L
0 10 20

30 40 50 60
Time(s)

Fig. 4 Case 1A: kinetic slow state compared with specified sine-wave reference, and fast state compared with manifold approximation and computed

control.
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Fig. 6 F/A-18A Hornet external physical characteristics.

X, = 0.0818 and 7, = 4.701, and the control is bounded for all time.
The initial overshoot may be avoided by adding actuator dynamics
and adjusting the feedback gains. Note that the fast state response
remains close to its approximation ¢(, x).

Case 1B: This case simulates the regulator problem with x, =0
and x,(7) = 0. The control laws are the same as derived in Eqgs. (99)
and (100). The constants b; =0, B4 = 0, B; = 0, and B3 = 0, while
the other constants have the same values as in Case 1A. With the
choice of d =0, €; = 1000 > 1. The results are presented in Fig. 5,
which shows that the system asymptotically settles down to the
origin.

C. Lateral/Directional Maneuver for F/A-18A Hornet Aircraft

The complete nonlinear dynamic model in the stability axes is
represented by the nine states (M, «, B, p,q,r,¢,0,vy) and four
controls (1, 8,, 8,, 8,). For this example, [M, a, B, ¢, 6, ¥/]7 comprise
the slow states, and the angular rates [p, ¢, r]” comprise the fast
states. The aerodynamic database for the symmetric F/A-18 A Hornet
(seen in Fig. 6) is used [30]. The aerodynamic coefficients are given
as analytical functions of the sideslip angle, angle of attack, angular
rates, and the control surface deflections. Considering the number of
controls available, only three of the six slow states can be controlled.
Throttle is maintained constant at 7 = 0.523 and is not used as a
control. This is a result of using dynamic inversion [31]. The control
objective is to perform a 45 deg turn at or near zero sideslip angle
while tracking a specified angle-of-attack profile. Pitch attitude angle
0 and bank angle ¢ are left uncontrolled.

1. Controller Design

The control laws are developed according to the theory developed
in the previous sections. For brevity, only the equations required for

incorporating the control law in the simulation are presented here.
Since the aircraft equations of motion are highly coupled, the first
step is to transform them into slow and fast sets. Let x = [«, 8, ¥]"
represent the subset of the slow states and u = [§,, 8, §,]” represent
the control variables,

x=f(x, M, 0,¢) + £,(x,0,$)z + g(x, M)u
()

(102)

ez =1(z) + 1(x,M) + 1(x, M)z321 + k(x, M)u
10)

(103)

The parameter € is introduced on the left-hand side of Eq. (103) to
indicate the time-scale difference between body-axis angular rates
and the other states [14]. In the translational equations of motion,
functions such as gravitational forces and aerodynamic forces due to
angle of attack and sideslip angle are collectively represented as
f(x, M, 0, ¢). Terms in the translational equations of motion due to
the cross products between the angular rates and the slow states are
labeled f,(x, 6, ¢)z. The remaining terms in the slow state equations
are the control effectiveness terms labeled g(x, M). The nonlinearity
in the fast dynamics due to the cross product between the angular
rates is represented by /(z)1. The aerodynamic moment terms that
depend solely upon the slow state are denoted as I(x, M)2, and the
aerodynamic moment terms that depend linearly on the angular rates
are denoted as I(x)3. The term k(x, M) is the control effectiveness
term in the angular rate dynamics. The exact form of these functions
is derived in the Appendix. Define the errors X = x — x, and Z =
z — h(X, €, X,, X,, M) and transform Eqgs. (102) and (103) into error
coordinates equivalent to Egs. (39) and (40):
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X=f(X+x,.M.0.¢) + £,(X +x,.0.9)[Z + h()]
£()
+g(x +x,M)[I'y + I'y] — x, (104)

ez =1[z+h()] + (X +x,.M) + (X + x,, M)[z + h(.)]321
1)
oh  dh. oh

+k(X+X,,M)[FS+Ff]—€g—égx—fwM (105)

Note that, for an aircraft example, the manifold will also be a
function of Mach number. Let ®(X, x,, X,, [y, M) be the approx-
imate manifold. Then, Eq. (38) expresses the manifold condition. In
this case, select

O, x,.%,,T,) = —I(X + x,, M)[I(X + x,, M)

+ kX +x,,M)I23 -1 (106)
such that
- . 0P 0P - P .
(MCD)(x,x,,x,,FS)—eE—I—eE +€WM—I[<I)(.)]
— k(X +x,, M)T,1 (107)

To design I, develop the reduced fast subsystem,

x' =0 (108)

7 =17+ ®)]+IE+x,. M) + (X +x,, M)z + ()]
+ K&+ x,. M), + I]321 (109)

Using dynamic inversion and Eq. (106), design

Ty =k (x + x,, M){—A;Z — 1[7 + B()] — L(X + x,, M)z}31
(110)

where A is the chosen feedback gain. Then, the closed-loop reduced
subsystem becomes

z'=—A;z (111)
Comparing with Eq. (48),
L()=Az (112)

K¢()=0 (113)

Similarly, develop the reduced-order slow subsystem,
X=f(X+x,,M,0,¢0) — (X +x,.,0, )L(X + x,, M)l (X
+ X, M) - g(fi + )(;"1‘4)1(_1()‘2 + X, M)l(q>) - Xr

+ [_fZ(Si + X, 0’ ¢)l(i + erju)ilk()hi + X, M)

+ g(X +x,, M)|[,3123 — 1 (114)

Then, the control law for the reduced slow subsystem is computed
as

Iy =B{-AX + %} + B"H{—f;X +x,,M,0,¢)
+ (X +x,,0,0)l(x + x,, M)I(X + x,,M)}23—1 (115)
where
B =[f,(X +x,,0,)l(X + x,, M)"'k(X + x,, M)
+gx +x,M)]3

A is the feedback gain, and the resulting closed-loop system is
X=-AX —gX +x,, Mk (X + x,. M)[[()]1  (116)

where ®(.) is obtained from Eq. (106). Note by the choice of T,
Eq. (107) becomes

- . 0P P - P .
(MdD)(x,X,,x,,Fs)—eﬁ+eaix+ewM 117)

and thus O[C(e =0, X, X,, X,)] = 0. Furthermore, since the aero-
dynamic moments are a function of the angular rates, matrix I(X +
X,, M)3 is full rank. The control effectiveness terms k(X + x,, M)
represent the aerodynamic moment coefficients due to control
effector deflections, which are nonzero.

Remark 8: The aircraft example assumes that the Mach number,
pitch attitude angle, and bank angle are input stabilizable. Although
the angular rates are bounded by the reference trajectory, the Euler
angles remain bounded through the exact kinematic relationships.
Additionally, since the angle of attack is being tracked and thrust
remains constant, the Mach number remains bounded.

2. Results and Discussion

Case 2: The specified maneuver is a 45 deg turn at or near zero
sideslip angle while simultaneously tracking a step input in the angle of
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Fig. 7 Case 2: F/A-18A Mach number, angle of attack, and sideslip angle responses; 0.3/20k.
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attack. The flight condition is Mach 0.3 at 20,000 ft altitude (0.3 /20k).
The trim and initial conditions are (1) =2 deg, p(0) =4 deg/s,
q(0) = —2 deg/s,and r(0) = 2 deg /s. The feedback gain matrices
are

(118)

=
I

c o=
oo
- o o
S
=

|

cowm
o wo
wmoo

Theorem 1 guarantees the existence of the bound €*, but the
nonlinearity of this example restricts its analytical computation. Note
also that, for an aircraft, the parameter € is normally only introduced
in the modeling stage to take advantage of the presence of different
time scales in the system. In reality, this parameter is a function of the
flight condition and is difficult to quantify. Thus, it is advantageous to
derive and implement controllers that do not require knowledge of
this parameter.

Figures 7-10 evaluate control law performance for the specified
maneuver. After initial transients settle out, the angle of attack,
sideslip angle, and heading angle states closely track the reference.
The angle-of-attack error is within £0.2 deg, and the sideslip angle
tracking error is within £0.2 deg throughout the maneuver. The
heading angle is maintained within £0.25 deg. Close tracking of the
slow states implies that the fast states are successfully being driven
onto the approximate manifold, as is seen in Fig. 9. The angular rates
are smooth, and errors are within £2 deg /s. The control surface
deflections are within bounds and generate the desired nonzero
angular rates. The uncontrolled states M,6, and ¢ are well behaved
and remain bounded throughout the maneuver.

VII. Conclusions

A control formulation for tracking the slow states of a general class
of nonlinear singularly perturbed systems was developed based upon
the study of its geometric constructs. For a given set of nonlinear
algebraic equations, an approximate analytical form of the system
manifold was computed. Control laws for each of the subsystems and
boundedness of closed-loop signals was demonstrated with a
composite Lyapunov function approach, and asymptotic stabiliza-
tion was shown for the general class of nonlinear singularly perturbed
systems. Controller performance was demonstrated through numer-
ical simulation for two nonlinear examples.

Based upon the results presented in the paper, tracking error for
the nonlinear planar example was demonstrated to remain within
|0.08] at all times, as predicted by the analytically computed bound.
It was also shown that, for all values of ¢, the controller maintains
bounded stability and the asymptotic convergence of the errors to
origin for the regulator problem. Nonlinear simulations of an F/A-
18A Hornet demonstrate that the controller is capable of closely
tracking heading, sideslip angle, and angle of attack. The angular
rates were within bounds and seen to track the desired manifold
approximations well. Even though the Mach number, bank angle,
and pitch attitude angle were not controlled, their magnitudes
remained bounded as expected. The aircraft example demonstrates
the advantage of developing controllers independent of the scalar
perturbation parameter €.

Appendix

The nonlinear mathematical model of the aircraft is represented by
the following dynamic and kinematic equations:

M:

1
5 [Tmn cos o cos B — 3 Cpl(a, g, 8e) pvIM?*S — mg sin y]
m s

(AD)

a=gq —Cosﬂ{(pcosoz + rsina) sin 8}
LI T sina—}—lC (a, g, 8e) pv>M*S
COSﬂ mst ml] § 2 L\&, g,0€)puy
— mg cos 1 cos y]} (A2)
Q 1 . 1 21702
B= —T,ncosasinfB + = Cy(B, p, r,8e,ba, br) pviM*S
my,M 2
+ mg sin 4 cos yi| + (psina — rcosw) (A3)
. 1y_17 1 2102
p== “qr—|—gpst SbCy(B, p,r,8e,ba, ér) (A4)
. -1, o,
g=-= pr+ — pv:M?*ScC,,(a, g, be) (A5)
1 21,
L -1, 1
F== 7 pq—l—g,ovszSan(ﬂ,p,r,Se,Sa,Sr) (A6)
é=p+qgsingtand + rcosptand (A7)
6"=qcos¢—rsin¢ (A8)
¥ = (gsing + rcos ¢) sec § (A9)

Wind-axes orientation angles p and y are defined as follows:
siny = cos cos fsin 8 — sin B sin ¢ cos 6

—sina cos B cos¢cos b (A10)

sin 4 cos y = sin O cos « sin B + sin ¢ cos f cos

— sina sin 8 cos ¢ cos 0 (A11)

cos (4 cos y = sin O sin« + cos « cos ¢ cos 0 (A12)

To write the equations in the form of Eqgs. (102) and (103),

fi(x.M,0,¢)

1
mvgM cos f

[% C,(a) pv2M?*S — mg cos i cos y]

_ Al3
o7 [% Cy(B)pv;M?S + mg sin i cos y} (A1)
0
—cosatan f 1 —sinatan 8
f,(x,0,¢) = sino 0 —cosa
0 secfsing  cos¢sec
(Al4)
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g (x.M)
— 5P (L M)*SCy, 0 0
B 0 i Cr, PUIMES 55Cy, puiMPS
0 ) 0 ; 0
(A15)
l(z) = 1 (A16)
2 p2MESBC/(B)
1(x,M)= ﬁ PVZM?ScC,, () |2 (A7)
31 PUEMSHC, (B)
L(x,M)
& pvM2SbC,, 0 L o M2ShC,
= 0 s PUIMPScC,, 0 3
s PU;M?SbC, ' 0 & p2M2SbC,,
(A18)
k (x, M)
0 o PUEMASHC, - prPMPSHC,,
= | 5 pU;M*ScC,, 0 0
0 & PEMPSBC,, - pu?MPSC,,
(A19)
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