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Abstract— Adaptive control for non-minimum phase systems
is a challenging problem. This paper proposes a method of
adaptive control for systems that may be both nonlinear and
non-minimum phase. This is accomplished by exploiting time
scale separation between the internal and external dynamics.
The original non-minimum phase control problem is reduced
to two minimum phase control problems through a time scale
analysis. The resulting adaptive control signals are fused via
multiple time scale control techniques. Singular perturbation
theory is used to prove the stability and convergence of the full-
order system as an extension of the stability and convergence of
the two reduced-order systems. The effectiveness of this method
is validated on a nonlinear example system.

I. INTRODUCTION

Ioannou and Sun illustrated the significance of the non-
minimum phase adaptive control problem. “The assumption
of minimum phase... has often been considered as one of the
limitations of adaptive control in general...” Further, “The
minimum phase assumption is one of the main drawbacks
of [model reference adaptive control] for the simple reason
that the corresponding discrete-time plant of a sampled
minimum phase continuous-time plant is often nonminimum
[sic] phase” [1, p. 412-413]. Goodwin and Sin showed local
stability for Model Reference Adaptive Control (MRAC) on
a class of discrete non-minimum phase systems [2]. John-
stone, Shah, and Fisher used control weighting to overcome
the non-minimum phase problem [3]. Previously researchers
have shown that feedforward terms can make the problem
minimum phase [4], [5]. Some model-free adaptive control
methods do not require the non-minimum phase assumption
[6], [7], [8], [9], [10], [11]. For a general treatise on adaptive
methods for non-minimum phase systems see [12].

Recent research has demonstrated control approaches that
are well suited for non-minimum phase systems [13, p. 129-
185]. However, systems with model uncertainties remain
unaddressed. This paper’s primary contribution is a novel
method of adaptive control for non-minimum phase systems.
It is proven that with this method a system’s states converge
to a reference model under a condition (see Eq. 9) that can
be easily checked. Unlike related work, this method utilizes
model reduction to simplify implementation and provide
insights into the dynamics of the plant. Additionally, this
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method is a flexible framework that is generally applicable
to a wide class of adaptive control algorithms.

II. PROBLEM FORMULATION

This work addresses nonlinear non-minimum phase sys-
tems of the form

x́ = fx(x, z,u) (1a)
ϵzź = fz(x, z,u) (1b)
y = Cx (1c)

The variables x ∈ Dρ
x and z ∈ Dn−ρ

z are the state variables.
u ∈ Rm is the system input and y ∈ Rg is the system output.
Here, Dρ

x ⊆ Rρ where the superscript indicates the dimension
and the subscript indicates a different subspace that is either
the result of a bijection of the set Bρ(rx) × Bn−ρ(rz) for
rx, rz ∈ R+ or a subset of the same. The variable ρ ∈ N is
the sum of the relative degrees of the system outputs such
that n > ρ ≥ g. The variable ts ∈ R+ will represent time.
The notation (́·) is the derivative with respect to the time
variable ts. The constant ϵz ∈ R+ is called the time scale
separation parameter. By definition O(fz) = O(fx) = O(1)
for the variable ϵz . The order of a function (i.e. the output
of the O operator) is a measure of the rate of change of
that function as ϵz → 0. See [13, Appendix A.2] for a more
formal definition.

The two primary characterizing features of this form (i.e.
Eq. 1) are 1 the time scale properties as indicated by the
appearance of the time scale separation parameter ϵz and 2
that the output is solely dependant upon x through the matrix
C ∈ Rg×ρ. The variable x is known as the system’s external
state and the variable z is called the system’s internal state
because of their respective relationships with the system
outputs. The zero dynamics of a system can be determined
by setting y = ẏ = 0 and solving for the remaining
dynamics. Clearly, from Eq. 1 this will be equivalent to the
internal dynamics with the external states set to 0. If the zero
dynamics are unstable then the system is called non-minimum
phase. This is a generalization of the concept of zeros for
linear systems. Indeed the poles of a linear system’s zero
dynamics are equivalent to the zeros of the full-order system.
Thus this method is valid for both linear and nonlinear
systems. The majority of adaptive control literature assumes
that the zero dynamics are stable about some equilibrium
within the domain Dρ

x × Dn−ρ
z (i.e. minimum phase) (e.g.

[1], [14], [15]). This work does not make that assumption.

Remark 1. It is worth noting that a wide class of systems
can be transformed into the format given in Eq. 1 using a
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diffeomorphism. Let this diffeomorphism be called R. The
existence and uniqueness of R are worth considering. Exis-
tence: If the system is affine and the time scale separation
parameter is ignored then the transformation R is guaranteed
to exist [16, p. 566]. This work is not limited to affine
systems, but affine systems are common in adaptive control
applications. Thus the existence of R will usually depend
upon the time scale separation. In multiple time scale control,
it is typically assumed that 0 < ϵz ≪ 1. However, the method
proposed herein is effective even if ϵz > 1. It is unlikely
that ϵz will be exactly equal to 1. Thus the transformation
R is likely to exist and this method is widely applicable.
Uniqueness: R is not typically unique [16, p. 523]. So R can
be selected to ensure that the system is controllable. Unlike
[16] no constraints are placed upon z. Thus it is possible for
ϵzź to be dependent upon the input.

A. Mathematical Notation

Let L(·) be the Lie derivative operator along the vector
field inside the parenthesis. Let the operator |(·)|p be the
lp norm of a vector with finite dimension. If this operator
is applied to a matrix then it is the induced lp norm of the
matrix. If there is no subscript then it is the absolute value of
a scalar. Let the operator ∥(·)∥p be the Lp norm over time. If
this operator is applied to a vector then it will denote the Lp

of each component of the vector. In both cases p ∈ [1,∞).
However, the same notation will apply to the infinity norm.

III. SYSTEM TIME SCALES

The time scale of a system state variable is a measure of
how quickly that state converges or diverges. The systems
considered in this paper will have two-time scales. The fast
states will converge on the fast time scale tf and the slow
states will converge on the slow time scale ts. The time scale
separation parameter, often denoted ϵz = ts/tf , is the ratio
between the two time scales. Conversion between fast time
and slow time is a change of units. Derivatives with respect to
the different time scales are useful. They are d(·)/dts = (́·)
and d(·)/dtf = (̀·). These derivatives are related through the
relationship (̀·) = ϵz (́·).

The class of adaptive control algorithms considered here
use time varying control state variables that are described by
differential equations (i.e. a reference model and adapting
gains). These additional control states are added to the
system to create an augmented system. Let xm ∈ Dρ

x and
zm ∈ Dn−ρ

z be bounded reference model states. Let rx ∈ Rl

and rz ∈ Rk be the inputs to these reference models. The
parameters θ̂x ∈ Pi

x and θ̂z ∈ Pj
z are adaptive estimates

of the bounded true parameters θx ∈ Pi
x and θz ∈ Pj

z

respectively. Similar to D, the set Pi
x ⊆ Ri is the result of a

bijection of the set Bi(rθx) and the set Pj
z ⊆ Rj is the result

of a bijection of the set Bj(rθz) for rθx, rθz ∈ R+. Eq. 1 is
now augmented with unspecified differential equations that
describe the time evolution of these control states. The result

is

x́ = fx(x, z,u) (2a)
x́m = qx(xm, rx) (2b)
´̂
θx = sx(x,xm, rx) (2c)
ϵzź = fz(x, z,u) (2d)

ϵzźm = qz(zm, rz) (2e)

ϵz
´̂
θz = sz(z, zm, rz) (2f)

The output equation is the same for the remainder of this
paper so y is dropped. The following assumption is important
to the stability analysis.

Assumption 1. The time scale of the reference models and
the adaption laws must match the time scale of the subsystem
(i.e. internal or external dynamics) to which they are applied.
Mathematically this means O(qz) = O(qx) = O(sz) =
O(sx) = O(1).

Physically this assumption means that the relative speed of
the reference models for the internal and external states is
the same as the relative speed for the internal and external
dynamics. This makes intuitive sense because the method
developed herein relies on time scale separation. If the
slow reference model moved too quickly then the slow
states would not be able to keep up - or, more precisely,
the evolution of the slow states would not be able to be
decoupled from the evolution of the fast states using the
time scale analysis to follow.

A final transformation will be applied to Eq. 2 so that it
is in error coordinates. Let ex ≜ x − xm, ez ≜ z − zm,
θ̃x ≜ θ̂x − θx and θ̃z ≜ θ̂z − θz , such that ex ∈ Bρ(rx),
ez ∈ Bn−ρ(rz), θ̃x ∈ Bi(rθx), and θ̃z ∈ Bj(rθz). Thus

éx = fx(ex + xm, ez + zm,u)− x́m (3a)
´̃
θx = sx(ex + xm,xm, rx)− θ́x (3b)

ϵzéz = fz(ex + xm, ez + zm,u)− ϵzźm (3c)

ϵz
´̃
θz = sz(ez + zm, zm, rz)− ϵzθ́z (3d)

To simplify notation let χ =
[
eTx xT

m θ̃T
x

]T
and ζ =[

eTz zT
m θ̃T

z

]T
. This allows Eq. 3 to be rewritten com-

pactly as

χ́ = fχ(χ, ζ,u, x́m, θ́x) (4a)

ϵz ζ́ = fζ(χ, ζ,u, ϵzźm, ϵzθ́z) (4b)

It is now assumed that these are sufficiently smooth bounded
functions within the domain of interest.

Assumption 2. The functions fζ and fx are sufficiently
smooth and defined such that rz, rx, ζ,x ∈ L∞ =⇒ ζ̀, x́ ∈
L∞

In other words, Assumption 2 requires that the equations
of motion be continuously differentiable as many times as
necessary and have no singularities. This assumption will be
used in the stability analysis to ensure the applicability of
Barbalet’s Lemma [1, Lemma 3.2.5].
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As stated previously, the general premise of this approach
is to drive the fast states to a stable equilibrium and then
control the slow states. Conceptually this separates the sys-
tem into two reduced subsystems - one fast and one slow. In
the reduced fast subsystem the slow states are assumed to be
stationary because they evolve so slowly that their evolution
has a relatively little effect on the fast states. In the reduced
slow subsystem the fast states are assumed to have already
reached their steady-state stable equilibrium trajectory. This
trajectory is known as the manifold. The subscript 1 will be
used to represent a solution to the fast subsystem and the
subscript 0 will be used to represent a solution to the slow
subsystem.

Assumption 3. The fast reference model is selected to be
the manifold (zm ≜ z0).

The time scale analysis to follow will assume that the fast
states have reached the manifold by the time the slow states
begin to evolve. Thus the fast states must be asymptotically
stable to the manifold. That is the purpose of Assumption 3.
Now the reduced subsystems will be studied. The reduced
subsystems are asymptotic solutions to the closed-loop sys-
tem. This requires an approximation of the relative time
scales of the internal and external dynamics. There are three
possible cases.

A. Case 1: ϵz < 1

This is the case where the internal dynamics are faster than
the external dynamics. The reduced slow subsystem can then
be found by taking the limit as ϵz → 0

χ́0 = fχ(χ0, ζ0,u0, x́m0, θ́x0) (5a)
0 = fζ(χ0, ζ0,u0, 0, 0) (5b)

Recalling the relationship (̀·) = ϵz (́·), applying it to Eq. 4,
and again taking the limit as ϵz → 0 gives the reduced fast
subsystem

χ̀1 = 0 (6a)

ζ̀1 = fζ(χ1, ζ1,u1, z̀m1, θ̀z1) (6b)

B. Case 2: ϵz > 1

This is the case where the external dynamics are faster
than the internal dynamics. Taking the limit as ϵz → 0 does
not accurately represent an asymptotic solution to the system
because the fast and slow states are reversed. Let ϵx ≜ 1/ϵz .
Using the relationship (̀·) = ϵz (́·) gives

ϵxχ̀ = fχ(χ, ζ,u, ϵxx̀m, ϵxθ̀x) (7a)

ζ̀ = fζ(χ, ζ,u, z̀m, θ̀z) (7b)

Equation 7 can now be used in place of Eq. 4. The reduced
subsystems can be found in the same manner as in Case 1.

C. Case 3: ϵz = 1

In this case, the internal and external dynamics are in the
same time scale. This case is not addressed by this work.
However, it is uncommon to encounter a system with ϵz
exactly equal to 1.

D. Summary

In both Case 1 and Case 2 a reduced slow subsystem
and a reduced fast subsystem are identified. Without loss of
generality to Case 2, only Case 1 will be considered. It is
worth noting that any given point in Dρ

x×Dn−ρ
z is also in the

domain of the reduced subsystems with the notable exception
that in the reduced slow subsystem the fast states must be
on the manifold. Thus the following relationships hold at
any given point χ = χ0 = χ1 and ζ = ζ1. Importantly,
ζ ̸= ζ0. It follows from Eqs. 4, 5, and 6 that x́m = x́m0, and
z̀m = z̀m1, and θ́x = θ́x0, and θ̀z = θ̀z1. The subsystem
inputs are not necessarily equal to each other or the full-
order input. However, all of the multiple time scale control
techniques considered in this paper will use u ≜ u1. Using
these relationships it follows from Eqs. 4, 5, and 6 that ζ̀ =
ζ̀1. However, χ́ ̸= χ́0. This inequality occurs because fx is
a function of z ̸= z0. It also follows from Eqs. 2 and 3 that
x́m = x́m0 and ´̃

θx =
´̃
θx0 because qx and sx respectively

are not functions of any component of χ. These facts are
useful in the stability analysis.

IV. CONTROL FORMULATION

The control framework proposed here is to select separate
control signals for the subsystems and then fuse those
signals. This section will proceed by showing that if the
subsystems are stable, then under certain conditions the full-
order system is also stable. Following that proof, several
possible fusion methods will be described.

A. Full-Order Stability Contingent Upon reduced-order Sta-
bility

Consider the following two Lyapunov functions:

V (ex, θ̃x) : Bρ(rx)× Bi(rθx) → R≥0 (8a)

W (ez, θ̃z) : Bn−ρ(rz)× Bj(rθz) → R≥0 (8b)

These Lyapunov functions are positive definite functions of
class C1 (i.e. the function and its derivative are continuous)
where V (0, 0) = W (0, 0) = 0.

Assumption 4. The adaptive control for the reduced subsys-
tems (i.e. u0, u1, qx, qz , sx, and sz) is defined such that V
and W are known and exists such that L(χ́0)V ≤ −α0|ex|22
and L(ζ̀1)W ≤ −α1|ez|22 for some α0, α1 ∈ R+.

Assumption 4 is a formal way of saying, and indeed implies
that the reduced subsystems are designed to be stable and
ex0, ez1 → 0 as tf → ∞. It is important to note that
these conclusions are only valid if the subsystems are not
interconnected. Additional work is needed to extend these
conclusions to the full-order system because the subsystems
are coupled. This is the purpose of Theorem 1.

Theorem 1. If ∃β ∈ R≥0 such that

L(x́− x́0)V ≤ β|ex|2|ez|2 (9)

Then ex, ez → 0 as t → ∞.

Proof: The proof for this theorem is similar to the one
proposed by [17] for multiple time scale systems. However, it
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has been significantly altered to account for adaptive control.
Define a composite Lyapunov function for the full-order
closed-loop system (Eq. 3)

ν = d∗V + dW (10)

where d ∈ (0, 1) and d∗ ≜ (1− d) ∈ (0, 1). Differentiating

ν́ = d∗L(χ́)V + dL(ζ́)W (11)

Adding and subtracting d∗L(χ́0)V gives

ν́ = d∗L(χ́0)V + d∗L(χ́− χ́0)V +
d

ϵz
L(ζ̀)W (12)

Recall that ζ̀ = ζ̀1 and χ́ ̸= χ́0. Also recall that ´̃
θx =

´̃
θx0

and x́m = x́m0. Thus the only component of χ́ that isn’t
canceled is x́

ν́ = d∗L(χ́0)V +
d

ϵz
L(ζ̀1)W + d∗L(x́− x́0)V (13)

By definition L(χ́0)V ≤ −α0|ex|22 and L(ζ̀1)W ≤
−α1|ez|22. Substitute these values and the condition from
Eq. 9

ν́ ≤ −d∗α0|ex|22 −
d

ϵz
α1|ez|22 + d∗β|ez|2|ex|2 (14)

Let v =
[
|ex|2 |ez|2

]T
. Rearranging gives ν́ ≤ −vTKv

where

K =

[
d∗α0 − 1

2d
∗β

− 1
2d

∗β d
ϵz
α1

]
(15)

By Sylvester’s Criterion [18] the matrix K is positive definite
if and only if the leading principle minors are positive. If β >
0 then the leading principle minors of K are positive if 0 <

d∗α0 and
(
4α0α1/ϵzβ

2 + 1
)−1

< d. Note that d ∈ (0, 1)
is an arbitrary number and all variables in these inequalities
are positive. Thus, ∃d ∈ (0, 1) such that both inequalities are
simultaneously satisfied. Now the case where β = 0 must be
examined. In this case, it can be seen by inspection that
K is positive definite (K is a diagonal matrix with positive
diagonal entries). Therefore, in all cases ν́ ≤ 0. Thus, via
Lyapunov’s direct method [1, Theorem 3.4.1] it is known
that ex, ez, θ̃x, θ̃z, ν́ ∈ L∞. Using Assumption 2, éx, éz ∈
L∞. Because K is positive definite and symmetric ∃λ ∈
R+ such that ν́ ≤ −λ|v|22. Thus it is known by Lemma 1
that |ex|2, |ez|2 ∈ L2 (see the Appendix for proof of the
lemmas). Further, Lemma 2 gives |ex|2, |ez|2 ∈ L1. Again
using Lemma 2 gives ex, ez ∈ L2.

In summary, it has been shown that ex, ez, èx, èz ∈ L∞
and ex, ez ∈ L2. Thus it is known that ex, ez → 0 as t → ∞
by Barbalat’s Lemma [1, Lemma 3.2.5].

u0 and u1 are the portions of u that remain after the
system is converted to the reduced subsystems. Theorem 1
is dependent upon the reduced-order models being stabilized
by their respective inputs u0 and u1. The control objective
now is to select the input u such that this condition is met.
In other words, u must be chosen such that both reduced-
order systems are simultaneously stabilized. See [13] for
more information on each of these control fusion methods.

B. Composite Control [19]

Composite control selects the control input to be u =
us + uf where u0 = us and u1 = us + uf . This implies
that uf = 0 when ez = 0. The engineer first selects us

so that the reduced slow model is stable. Then the engineer
can select uf such that the reduced fast model is also stable
(even in the presence of a nonzero slow input).

C. Sequential Control [13]

Sequential control uses the fast states as an input for the
slow system. The manifold for the fast states z0 is selected
such that the slow states converge to their reference model.
Then the input u can be selected to drive the fast states
to the desired trajectory z0. Thus sequential control uses
u0 = u1 = u.

D. Simultaneous Slow and Fast Tracking [20]

This method of control also uses the control u0 = u1 =
u. However, this control is chosen to inherently stabilize
both reduced-order systems simultaneously to an arbitrary
trajectory. In practice, this requires the dynamics to be fully
actuated. The advantage of this additional constraint is that
the slow states and the fast states can both be commanded to
any arbitrary trajectory (constrained only by time scales and
boundedness). Thus this method is particularly well suited
for Case 2 as defined above.

Remark 2. Note that ϵz is not required to implement the
control. This is advantageous because ϵz can be difficult
to determine. However, it is required that the engineer
have a general estimate for ϵz . This allows the engineer to
identify if Case 1 or Case 2 is applicable. Finally, a rough
approximation of ϵz will allow the engineer to design the
adaptive laws and reference models so that they evolve on
the correct time scale. This ensures that Assumption 1 is met.
Beyond these conditions, ϵz is allowed to be uncertain.

V. VALIDATION

Consider the nonlinear system

x́ = θ1 [arctan(x) + π] z + θ2 (cos(x) + 1)u (16a)

ϵź = x2z − u (16b)
y = x (16c)

where θ1, θ2 ∈ R+ are uncertain model parameters. The zero
dynamics are ź = θ1π/ (2θ2ϵ) z. This is unstable because
θ1π/ (2θ2ϵ) > 0. Thus the system is non-minimum phase.
The control objective is for the slow states to track the
following reference model x́m = −axm

xm where axm
∈

R+. The transformation R is the trivial automorphism.
Sequential Control is selected to fuse the control signals

for the reduced subsystems. Accordingly, z is treated as the
input to the reduced slow subsystem. The manifold z0 is
selected such that the reduced slow subsystem converges to
a reference model. Adaptive Nonlinear Dynamic Inversion
(ANDI) is selected for this purpose [14, p. 6-12]. Now u must
be selected to make the reduced fast subsystem track z0. The
input is selected by inspection to ensure the fast subsystem
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is Lyapunov sense stable. This yields the following manifold
and control signal

z0 =
−axm

xm − θ̂2 (cos(x) + 1)u− kxex

θ̂1 (arctan(x) + π)
(17a)

u = x2z + kzez (17b)

where kx, kz ∈ R+ are control gains. z0 appears on both
sides of Eq. (17a) so it must be solved. Recall that in the
reduced slow subsystem z = z0. Substituting Eq. (17b) into
Eq. (17a) and solving for z0 gives

z0 =
−axmxm − kxex

θ̂1 (arctan(x) + π) + θ̂2 (cos(x) + 1)x2
(18)

The adaptation laws are

´̂
θ1 = γ1Proj

(
θ̂1, (arctan(x) + π) z0ex

)
(19a)

´̂
θ2 = γ2Proj

(
θ̂2, (cos(x) + 1)u0ex

)
(19b)

where u0 = x2z0 is the input when z = z0 and γ1, γ2 ∈ R+

are gains for the adaptation laws.
Consider the following Lyapunov functions for the reduced

slow subsystems:

V =
1

2

(
e2x + γ−1

1 θ̃21 + γ−1
2 θ̃22

)
(20a)

W =
1

2
e2z (20b)

Per [14, Eq. 1.23] the time derivatives are

V́ ≤ −kxe
2
x (21a)

Ẁ = −kze
2
z (21b)

Now that the reduced subsystems have been proven indepen-
dently stable, the interconnection condition must be checked.
Assume that the domain is limited to |x| < x∗ for some
x∗ ∈ R+ and x is initialized within this region. Note that
due to the projection operator, θ1 and θ2 are bounded. Let
θ1∗ and θ2∗ respectively be those bounds. Using these facts
it can be shown that

L(x́− x́0)V ≤
[
θ1∗

3

2
π + θ2∗2

(
x2
∗ + kz

)]
exez (22)

Thus the conditions of Theorem 1 are satisfied. By Theo-
rem 1 ex, ez → 0 as ts → ∞.

The values used in this simulation are ϵ = 0.1, θ1 = θ2 =
1, γ1 = γ2 = 10. The initial conditions are x = xm = 1
and z = 0. The initial error of the adapting parameters θ̃ is
randomly selected from a 0 mean normal distribution with
a standard deviation of 10% their true value. The time scale
separation parameter ϵ is also simulated to be uncertain. As
such its error is sampled from the same distribution. Note
that the estimate of the time scale separation parameter is
not an adapting parameter. The parameter for the reference
model is ax = 1. The control gains are kx = 1 and kz = 10.
Figure 1 shows the time evolution of the external dynamics.
Figure 2 shows the time evolution of the internal dynamics.
Figure 3 shows the time evolution of the adapting parameters.
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It is worth noting that ANDI alone is incapable of stabilizing
this system because it non-minimum phase. Thus the method
proposed herein is a significant improvement.

VI. CONCLUSIONS

This paper presents a method of adaptive control for a
wide class of systems which may be both nonlinear and
non-minimum phase. The method requires some time scale
separation between the internal and the external dynamics,
but a very small time scale separation is permissible. Further,
it does not matter if the internal dynamics are faster or
the external dynamics are faster. In both cases, the system
is a singularly perturbed system suitable for multiple time
scale control. A highly general adaptive control architecture
has been merged into the system. This means that many
different adaptive methods can be used within this framework
and allows the given method to take advantage of the
most recent adaptive control research. Conditions were given
for the stability and convergence of this method. Finally,
a validating example was presented. From this work, the
following conclusions can be drawn:

1) This method allows adaptive control to be effectively
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Fig. 3. Evolution of the adapting parameters.
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applied to non-minimum phase systems provided there
is at least some time scale separation.

2) This method allows significant flexibility because the
engineer can choose the adaptive control method, the
adaptation laws, and the multiple time scale fusion
technique from a wide array of compatible approaches.

3) This method is proven stable and convergent. An engi-
neer can easily ascertain the stability and convergence
of a given system and a given control using Theorem 1.

Non-minimum phase systems have been a challenging prob-
lem for adaptive control since its inception. The conclusions
of this work bring the scientific community one step closer
to solving this problem.

APPENDIX

Lemma 1. Given v(t) : R≥0 → R−, x(t) : R≥0 → Rn, and
α ∈ R+ where v ∈ L1 and x ∈ L∞. Then ∀p ∈ [1,∞) it is
true that v ≤ −α|x|pp =⇒ x ∈ Lp

Proof: Begin with v ≤ −α|x|pp. The value |x|p exists
and is finite because x ∈ L∞ =⇒ x ∈ lp for all p and
t. Because both sides of the inequality are negative so the
following inequality also holds

∥v∥1 ≥ ∥α|x|pp∥1 (23)

∥v∥1/α exists and is finite because v ∈ L1. By Lemma 2
x ∈ Lp.

Lemma 2. Let x(t) : R≥0 → Rn. Then ∀p ∈ [1,∞) it is
true that x ∈ Lp if and only if |x|pp ∈ L1.

Proof: Begin with x ∈ Lp. By the definition of the Lp

norm

lim
τ→∞

∫ τ

0

|xi|pdt < ∞ (24)

where xi is the ith element of x. The sum of a finite quantity
of finite numbers is still finite. (Note the inverse of this logic
is also true. If the sum of positive numbers is finite then each
number must also be finite)

lim
τ→∞

∫ τ

0

n∑
I=0

[|xi|p] dt < ∞ (25)

Raising to the power of 1

lim
τ→∞

∫ τ

0

(
n∑

I=0

[|xi|p]1/p
)p

dt < ∞ (26)

By the definition of the Lp and lp norms

lim
τ→∞

∫ τ

0

|x|ppdt < ∞ (27)

Thus |x|pp ∈ L1. Each of these logical steps can be inverted.
So, by working backward, it is also true that |x|pp ∈ L1 =⇒
x ∈ Lp
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