Vehicle Systems \& Control Laboratory

TENSEGRITY SHAPE CONTROL
SES 52nd Annual Technical Meeting

James V Henrickson, Robert E Skelton, John Valasek
October 26, 2015
Vehicle Systems \& Control Laboratory

Introduction

Tensegrity Definitions and Dynamics

Control Law

Simulation Results

Conclusions and Future Work

Vehicle Systems \& Control Laboratory

## INTRODUCTION

## Tensegrity Structures:

- A configuration of axially-loaded members (sticks and strings) stabilized by string tension
- Minimum-mass optimization
- Deployable / reconfigurable applications


UCSD Engineering Lobby

## Shape Control Approach:

- Premise: Equilibrium configurations change with string tensions
- Describe dynamics in terms of node positions
- Specify shape objective
- Drive error between current and desired node positions to zero by adjusting tensions


## Potential Shape Control Applications:

- Morphing Airfoil
- Robotic Arm
- Formation Control


## TENSEGRITY DEFINITIONS AND DYNAMICS

Member Matrices:

$$
\begin{aligned}
& B=\left[b_{1} \ldots b_{\beta}\right], \quad S=\left[s_{1} \ldots s_{\alpha}\right], \quad R=\left[r_{1} \ldots r_{\beta}\right] \\
& N=\left[n_{1} \ldots n_{2 \beta}\right], \quad W=\left[w_{1} \ldots w_{2 \beta}\right]
\end{aligned}
$$

Connectivity Matrices:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
B & S & R
\end{array}\right]=N\left[\begin{array}{lll}
C_{b}^{T} & C_{s}^{T} & C_{r}^{T}
\end{array}\right]} \\
& C_{b}=\left[\begin{array}{ll}
-I & I
\end{array}\right], \quad C_{r}=\frac{1}{2}\left[\begin{array}{ll}
I & I
\end{array}\right]
\end{aligned}
$$

Internal Forces:

$$
\begin{aligned}
& \gamma_{i}=\frac{\text { force in string } s_{i}}{\left\|s_{i}\right\|}, \quad \lambda_{i}=\frac{\text { force in bar } b_{i}}{\left\|b_{i}\right\|} \\
& m_{i}=\text { mass of bar } b_{i}
\end{aligned}
$$



Vector Nomenclature

Class 1 Tensegrity Dynamics:

$$
\begin{aligned}
& \ddot{N} M+N K(\gamma)=W \\
& M \equiv \frac{1}{12} C_{b}^{T} \hat{m} C_{b}+C_{r}^{T} \hat{m} C_{r} \\
& K \equiv C_{s}^{T} \hat{\gamma} C_{s}+C_{b}^{T} \hat{\lambda} C_{b}
\end{aligned}
$$

where

$$
\begin{aligned}
\hat{\lambda} & \equiv\left\lfloor\dot{B}^{T} \dot{B}\right\rfloor \hat{l}^{-2} \hat{m} \frac{1}{12}+\left\lfloor B^{T} F C_{b}^{T}\right\rfloor \hat{l}^{-2} \frac{1}{2} \\
F(\gamma) & =W-S \hat{\gamma} C_{s}
\end{aligned}
$$

## CONTROL LAW

Need method for specifying the desired final shape of the given tensegrity structure.
$L: j \times 3$ matrix, specifies the "axes of interest"
$R: n \times h$ matrix, specifies "nodes of interest"
$L N R$ extracts the current values of the "node coordinates of interest"

$$
\begin{equation*}
Y_{c}=L N R \quad \in \quad \Re^{j \times h} \tag{1}
\end{equation*}
$$

$Y$ describes error between current $\left(Y_{c}\right)$ and desired $(\bar{Y})$ "node coordinates of interest" values:

$$
\begin{align*}
Y & =Y_{c}-\bar{Y}  \tag{2}\\
& =L N R-\bar{Y} \tag{3}
\end{align*}
$$

Desired error dynamics:

$$
\begin{equation*}
\ddot{Y}+\Psi \dot{Y}+\Omega Y=0 \tag{4}
\end{equation*}
$$

Express error dynamics in terms of N :

$$
\begin{align*}
& Y=L N R-\bar{Y}  \tag{5}\\
& \dot{Y}=L \dot{N} R  \tag{6}\\
& \ddot{Y}=L \ddot{N} R  \tag{7}\\
& \therefore \quad L \ddot{N} R+\Psi L \dot{N} R+\Omega(L N R-\bar{Y})=0 \tag{8}
\end{align*}
$$

Recall full system dynamics in terms of $N$ :

$$
\begin{aligned}
& \ddot{N} M+N K(\gamma)=W \\
& M \equiv \frac{1}{12} C_{b}^{T} \hat{m} C_{b}+C_{r}^{T} \hat{m} C_{r} \\
& K \equiv C_{s}^{T} \hat{\gamma} C_{s}-C_{b}^{T} \hat{\lambda} C_{b} \\
& \hat{\lambda} \equiv\left\lfloor\dot{B}^{T} \dot{B}\right\rfloor \hat{l}^{-2} \hat{m} \frac{1}{12}+\left\lfloor B^{T} F C_{b}^{T}\right\rfloor \hat{l}^{-2} \frac{1}{2}
\end{aligned}
$$

Re-express $\lambda$ for $i$ th bar member:

$$
\begin{aligned}
\lambda & =\Lambda \gamma-\tau \\
\tau_{i} & =\frac{m_{i}}{12 l_{i}^{2}} C_{b} \mathbf{e}_{i}^{T} \dot{N}^{T} \dot{N} \mathbf{e}_{i} C_{b}+\frac{1}{2 l_{i}^{2}}\left(\mathbf{e}_{i}^{T} C_{b} N^{T}\right) W C_{b}^{T} \mathbf{e}_{i} \\
\Lambda_{i} & =\frac{1}{2 l_{i}^{2}} \mathbf{e}_{i}^{T} C_{b} N^{T} N C_{s}^{T} C_{s} C_{b}^{T} \mathbf{e}_{i}
\end{aligned}
$$

Substitute derived system dynamics:

$$
\begin{gathered}
\ddot{N}=(W-N K) M^{-1} \\
\downarrow \\
L \ddot{N} R+\Psi L \dot{N} R+\Omega(L N R-\bar{Y})=0 \\
L N K M^{-1} R=L W M^{-1} R+\Psi L \dot{N} R+\Omega L N R-\Omega \bar{Y}
\end{gathered}
$$

Substitute for $K$ in first term and rearrange. $\gamma$ appears linearly:

$$
L N K M^{-1} R \mathbf{e}_{i}=L N\left[C_{s}^{T}\left(C_{s} M^{-1} R \mathbf{e}_{i}\right)^{\wedge} \gamma-C_{b}^{T}\left(C_{b} M^{-1} R \mathbf{e}_{i}\right)^{\wedge} \lambda\right]
$$

Substitute $\lambda=\Lambda \gamma-\tau$ and combine $\gamma$ terms:

$$
\begin{aligned}
& L N K M^{-1} R \mathbf{e}_{i}= \\
& L N\left[\left[C_{s}^{T}\left(C_{s} M^{-1} R \mathbf{e}_{i}\right)^{\wedge}+C_{b}^{T}\left(C_{b} M^{-1} R \mathbf{e}_{i}\right)^{\wedge} \Lambda\right] \gamma+C_{b}^{T}\left(C_{b} M^{-1} R \mathbf{e}_{i}\right)^{\wedge} \tau\right]
\end{aligned}
$$

Full expression for desired error dynamics:

$$
\begin{aligned}
& {\left[L W M^{-1} R+\Psi L \dot{N} R+\Omega(L N R-\bar{Y})\right] \mathbf{e}_{i} } \\
= & L N\left[\left[C_{s}^{T}\left(C_{s} M^{-1} R \mathbf{e}_{i}\right)^{\wedge}+C_{b}^{T}\left(C_{b} M^{-1} R \mathbf{e}_{i}\right)^{\wedge} \Lambda\right] \gamma+C_{b}^{T}\left(C_{b} M^{-1} R \mathbf{e}_{i}\right)^{\wedge} \tau\right]
\end{aligned}
$$

Isolate $\gamma$ term:

$$
\begin{align*}
{\left[L W M^{-1} R+\right.} & \Psi L \dot{N} R+\Omega(L N R-\bar{Y})] \mathbf{e}_{i}-L N C_{b}^{T}\left(C_{b} M^{-1} R \mathbf{e}_{i}\right)^{\wedge} \tau \\
& =L N\left[C_{s}^{T}\left(C_{s} M^{-1} R \mathbf{e}_{i}\right)^{\wedge}+C_{b}^{T}\left(C_{b} M^{-1} R \mathbf{e}_{i}\right)^{\wedge} \Lambda\right] \gamma \tag{9}
\end{align*}
$$

This is effectively of the form: $\mu=\Gamma \gamma$

Define $\mu$ and $\Gamma$ appropriately, enforcing non-negative tensions, and solve for $\gamma$ :

$$
\begin{aligned}
\mu= & \Gamma \gamma, \quad \gamma \geq 0 \\
\mu_{i}= & {\left[L W M^{-1} R+\Psi L \dot{N} R+\Omega(L N R-\bar{Y})\right] \mathbf{e}_{i} } \\
& -L N C_{b}^{T}\left(C_{b} M^{-1} R \mathbf{e}_{i}\right)^{\wedge} \tau \\
\Gamma_{i}= & L N\left[C_{s}^{T}\left(C_{s} M^{-1} R \mathbf{e}_{i}\right)^{\wedge}+C_{b}^{T}\left(C_{b} M^{-1} R \mathbf{e}_{i}\right)^{\wedge} \Lambda\right]
\end{aligned}
$$

where

$$
\begin{aligned}
\mu & =\left[\begin{array}{llll}
\mu_{1} & \mu_{2} & \ldots & \mu_{n}
\end{array}\right]^{T} \\
\Gamma & =\left[\begin{array}{llll}
\Gamma_{1} & \Gamma_{2} & \ldots & \Gamma_{n}
\end{array}\right]^{T}
\end{aligned}
$$

## SIMULATION RESULTS

## simulation results

## 2D Cross Case 1:

Node 1 to $\mathbf{x}=\mathbf{0 . 7 5}$

$$
\begin{aligned}
L & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \\
R & =\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]^{T} \\
\bar{Y} & =0.75
\end{aligned}
$$








## simulation results

## 2D Cross Case 2:

Nodes 1 and 2 to $(0.5,0.5)$

$$
\begin{aligned}
L & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \\
R & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right] \\
\bar{Y} & =\left[\begin{array}{ll}
0.5 & 0.5 \\
0.5 & 0.5
\end{array}\right]
\end{aligned}
$$








## simulation results

## 2D Cross Case 3:

Node 1 to $\mathbf{x}=\mathbf{0}$ :

$$
\begin{aligned}
L & =\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right] \\
R & =\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]^{T} \\
\bar{Y} & =0
\end{aligned}
$$








AEROSPACE ENGINEERING
Vehicle Systems econtrol

2D Cross Case Study:
Collapse cross to $\mathbf{x}=\mathbf{0}$
(See animations)

## simulation results

## 3D Prism Case 1:

Transform to pyramid

$$
\begin{aligned}
L & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \\
R & =I_{6}
\end{aligned}
$$

$$
\bar{Y}=\left[\begin{array}{cc}
1 & 0 \\
0.5 & 0.87 \\
0 & 0 \\
0.5 & 0.29 \\
0.5 & 0.29 \\
0.5 & 0.29
\end{array}\right]^{T}
$$



## simulation results

3D Prism Case 2:
Deployability

$$
\begin{aligned}
& L=I_{3} \\
& R=I_{6}
\end{aligned}
$$

$$
\bar{Y}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.5 & 0.87 & 0 \\
0 & 0 & 0 \\
1 & 0 & 1 \\
0.5 & 0.87 & 1 \\
0 & 0 & 1
\end{array}\right]^{T}
$$



## CONCLUSIONS AND FUTURE WORK

## Conclusions:

- Control law is functioning correctly
- Shape control method scaled without modification
- Solutions can be found with non-negative constraint on tensions


## Future Work:

- Assess scalability with more complex structures
- Apply to structure design task
- Detect structure self-interference
- Include external forces and disturbances
- Demonstrate on example applications


## Questions?

