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introduction

Tensegrity Structures:
• A configuration of axially-loaded members

(sticks and strings) stabilized by string
tension

• Minimum-mass optimization
• Deployable / reconfigurable applications UCSD Engineering Lobby
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introduction

Shape Control Approach:

• Premise: Equilibrium configurations change with string tensions
• Describe dynamics in terms of node positions
• Specify shape objective
• Drive error between current and desired node positions to zero by

adjusting tensions

Potential Shape Control Applications:

• Morphing Airfoil
• Robotic Arm
• Formation Control
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tensegrity definitions and dynamics

Member Matrices:

B = [b1 . . . bβ ], S = [s1 . . . sα], R = [r1 . . . rβ ]

N = [n1 . . . n2β ], W = [w1 . . . w2β ]

Connectivity Matrices:[
B S R

]
= N

[
CT

b CT
s CT

r

]
Cb =

[
−I I

]
, Cr = 1

2

[
I I

]
Internal Forces:

γi =
force in string si

∥si∥
, λi =

force in bar bi
∥bi∥

mi = mass of bar bi

Vector Nomenclature
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tensegrity definitions and dynamics

Class 1 Tensegrity Dynamics:

N̈M +NK(γ) = W

M ≡ 1

12
CT

b m̂Cb + CT
r m̂Cr

K ≡ CT
s γ̂Cs + CT

b λ̂Cb

where

λ̂ ≡ ⌊ḂT Ḃ⌋l̂−2m̂
1

12
+ ⌊BTFCT

b ⌋l̂−2 1

2

F (γ) = W − Sγ̂Cs

7



control law



control law

Need method for specifying the desired final shape of the given
tensegrity structure.

L: j × 3 matrix, specifies the “axes of interest”

R: n× h matrix, specifies “nodes of interest”

LNR extracts the current values of the “node coordinates of interest”

Yc = LNR ∈ ℜj×h (1)

Y describes error between current (Yc) and desired (Ȳ ) “node
coordinates of interest” values:

Y = Yc − Ȳ (2)
= LNR− Ȳ (3)
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control law

Desired error dynamics:

Ÿ +ΨẎ +ΩY = 0 (4)

Express error dynamics in terms of N:

Y = LNR− Ȳ (5)
Ẏ = LṄR (6)
Ÿ = LN̈R (7)

∴ LN̈R+ΨLṄR+Ω(LNR− Ȳ ) = 0 (8)
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control law

Recall full system dynamics in terms of N :

N̈M +NK(γ) = W

M ≡ 1

12
CT

b m̂Cb + CT
r m̂Cr

K ≡ CT
s γ̂Cs − CT

b λ̂Cb

λ̂ ≡ ⌊ḂT Ḃ⌋l̂−2m̂
1

12
+ ⌊BTFCT

b ⌋l̂−2 1

2

Re-express λ for ith bar member:

λ = Λγ − τ

τi =
mi

12l2i
CbeT

i Ṅ
T ṄeiCb +

1

2l2i
(eT

i CbN
T )WCT

b ei

Λi =
1

2l2i
eT
i CbN

TNCT
s CsC

T
b ei
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control law

Substitute derived system dynamics:

N̈ = (W −NK)M−1

↓
LN̈R+ΨLṄR+Ω(LNR− Ȳ ) = 0

LNKM−1R = LWM−1R+ΨLṄR+ΩLNR− ΩȲ

Substitute for K in first term and rearrange. γ appears linearly:

LNKM−1Rei = LN
[
CT

s (CsM
−1Rei)

∧γ − CT
b (CbM

−1Rei)
∧λ

]
Substitute λ = Λγ − τ and combine γ terms:

LNKM−1Rei =

LN
[[
CT

s (CsM
−1Rei)

∧+CT
b (CbM

−1Rei)
∧Λ

]
γ+CT

b (CbM
−1Rei)

∧τ
]
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control law

Full expression for desired error dynamics:

[
LWM−1R+ΨLṄR+Ω(LNR− Ȳ )

]
ei

= LN
[[
CT

s (CsM
−1Rei)

∧+CT
b (CbM

−1Rei)
∧Λ

]
γ+CT

b (CbM
−1Rei)

∧τ
]

Isolate γ term:

[
LWM−1R+ΨLṄR+Ω(LNR− Ȳ )

]
ei − LNCT

b (CbM
−1Rei)

∧τ

= LN
[
CT

s (CsM
−1Rei)

∧ + CT
b (CbM

−1Rei)
∧Λ

]
γ (9)

This is effectively of the form: µ = Γγ
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control law

Define µ and Γ appropriately, enforcing non-negative tensions, and
solve for γ:

µ =Γγ, γ ≥ 0

µi =
[
LWM−1R+ΨLṄR+Ω(LNR− Ȳ )

]
ei

− LNCT
b (CbM

−1Rei)
∧τ

Γi =LN
[
CT

s (CsM
−1Rei)

∧ + CT
b (CbM

−1Rei)
∧Λ

]
where

µ =
[
µ1 µ2 . . . µn

]T
Γ =

[
Γ1 Γ2 . . . Γn

]T
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simulation results

2D Cross Case 1:
Node 1 to x = 0.75

L =
[
1 0 0

]
R =

[
1 0 0 0

]T
Ȳ = 0.75
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simulation results

2D Cross Case 2:
Nodes 1 and 2 to (0.5,0.5)

L =

[
1 0 0

0 1 0

]

R =


1 0

0 1

0 0

0 0


Ȳ =

[
0.5 0.5

0.5 0.5

]
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simulation results

2D Cross Case 3:
Node 1 to x = 0:

L =
[
1 0 0

]
R =

[
1 0 0 0

]T
Ȳ = 0
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simulation results

2D Cross Case Study:
Collapse cross to x = 0

(See animations)
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simulation results

3D Prism Case 1:
Transform to pyramid

L =

[
1 0 0

0 1 0

]
R = I6

Ȳ =



1 0

0.5 0.87

0 0

0.5 0.29

0.5 0.29

0.5 0.29



T
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simulation results

3D Prism Case 2:
Deployability

L = I3

R = I6

Ȳ =



1 0 0

0.5 0.87 0

0 0 0

1 0 1

0.5 0.87 1

0 0 1



T
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conclusions and future work

Conclusions:

• Control law is functioning correctly
• Shape control method scaled without modification
• Solutions can be found with non-negative constraint on tensions

Future Work:

• Assess scalability with more complex structures
• Apply to structure design task
• Detect structure self-interference
• Include external forces and disturbances
• Demonstrate on example applications
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Questions?
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