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Motivation
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Morphing Aircraft
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Why should it have morphing capabilities?

�Improved efficiency at multiple flight conditions

�Wider range of possible maneuvers

How would it physically achieve morphing?

�SMA  Actuators



Shape Memory Alloys (SMA)

� Metallic Alloys used as    

actuators

� Shape Memory Effect – SMA can 
fully recover from a plastically 
deformed shape change by the 
addition of heat

� Electricity can be used to 

Kirkpatrick & Valasek - 5

� Electricity can be used to 
induce a cycle of heating, 
cooling, and deformation in 

an SMA in order to execute a 

dynamic task

� PROBLEM: 

Efficiently characterizing and 
controlling SMA behavior



Why Is Characterizing SMAs 
Such A Challenge?

1. Uncertain Model Parameters   

2. Temperature–Strain Relationship: HYSTERESIS

� Behavior based on a 2-D FIELD, not a 2-D PATH
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Reinforcement Learning
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Reinforcement  Learning

� Does not require any prior knowledge.

– Knowledge is based on experience and interaction with the environment, not on 
input-output data supplied by an external supervisor

� Achieves a specific goal by learning from interactions with the environment.

– Considers state information  (s)

– Performs sequences of actions,  (a), observing the consequences
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– Performs sequences of actions,  (a), observing the consequences

– Attempts to maximize rewards (r) over time

• These specify what is to be achieved, 

not how to achieve it

– Constructs an action value function (Q)

• Learns an optimal control policy

� Memory is contained in the action value function



RL Algorithm: Sarsa

3-D Control Policy Matrix

� States (S): Temperature and Strain Dependent

� Actions (A): Change Temperature (Voltage Application)

� Goal (G): Desired Strain

� α: Repetition Penalty

( , , ) ( , , ) [ ( ', ', ) ( ', ', ) ( , , )]Q S A G Q S A G R S A G Q S A G Q S A Gα γ← + + −
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� α: Repetition Penalty

� γ: Future Policy Weight

Action Choice Method: ε-Greedy

� Explore or Exploit: Dependent upon ε (which varies with Episodes)

Why Not Q-Learning?

� On-policy v. Off-policy Learning



The Markov Property
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The Markov Property

� In a general system, the probability of achieving a specific goal from a 

specific initial state is a function of both current and past information 

about states, actions, and rewards.

{ }0011111 ,,,,,,,,|,'Pr asrasrasrrss ttttttt K−−++ ==
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� In a system with the Markov Property, the same probability distribution is 

obtained with only the current state and action information required.

{ }0011111 ,,,,,,,,|,'Pr asrasrasrrss ttttttt K−−++ ==
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The Markov Property

� Hysteresis is non-Markovian in nature because moving from one state to 

another in hysteresis space typically requires knowledge of state history.

� In the problem of learning to control the strain of an SMA wire during a 

thermally-induced transformation, this non-Markovian behavior is 
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thermally-induced transformation, this non-Markovian behavior is 

apparent.



The Markov Property

� For this research, we recognized that the past strain history is only needed 

so that we know the current point in temperature/strain space.

� By measuring temperature and including it in the current state 

information, the system becomes Markovian.
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information, the system becomes Markovian.



Simulation
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� Temperature-Strain Relation:

� Hyperbolic Tangent Model

� Voltage-Temperature Relation:

Simulation Model
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� Voltage-Temperature Relation:

� Learns input-output data

(how to apply voltage to achieve 

a particular position state), not 

the constitutive model of an SMA
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Simulation Results

Strain Learning Only
Strain and Temperature 

Learning

Kirkpatrick & Valasek - 16

� Goal States: Random Strain Goals

� Error range: ± 0.2% Strain

� Episodes: 50,000

Time (s)



� Measuring temperature and including it in the information composing 
the current state allows the Sarsa algorithm to converge for the SMA 
learning problem

� The SMA hysteresis is a non-Markovian environment when only 
strain is considered in state information

� Measuring temperature alters the system and provides the Markov 
Property

Conclusions
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Property

� With the improved description of the state-space, Sarsa is able to 
converge to a near-optimal control policy in finite time using the 
Sarsa algorithm.



� Open Problems

– Expanding scope from wire (one spatial dimension displacement) to  

surface (two and three-dimensional displacements) would expand these 

methods to greater generalities.

– Learning how to control arrays of 1-D wires needed to make 1-D SMA 

actuators useable for morphing.

– Design and construct SMA-based actuator for implementation on a 

Morphing UAV.

Challenges and Open Problems
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Morphing UAV.

� Challenges

– Extension to higher dimensions produces much longer learning times 

due to spatial complexity.

– The ability to heat 2-D and 3-D SMA objects is difficult to accomplish 

through electrical resistance.

– May need separate actuator designs for each degree of freedom being 

morphed.
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Questions?
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CURRENT METHOD:  Experimentation and Testing to approximate 
constitutive model

� Mainly based on material property parameters OR system identification

� Approximate Models:

� Neglect hysteresis

SMA  Characterization Methodologies
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� Neglect hysteresis

� Arrange antagonist SMAs to “cancel” the hysteretic effect

� Modified plasticity model composed of averaged thermal 
effects

� Disregard coupling of hysteretic and structural response

� Other averaging techniques



Experimental Forced Characterization:
Water

SMA Major Hysteresis
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Experiment – Goals v. Time
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mid learning



Experiment – Mid Learning Refinement
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