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Two-Time Scale Systems
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Research Objective
Nonlinear tracking control structures for:
– Two-Time Scale Systems/ Singularly Perturbed Systems

Examples: mechanical oscillators,  airplanes,  flexible robot link 
manipulators, …

– Mathematical form:

x is the vector of slow variables, 
z is the vector of fast variables,

is a small positive parameter that captures the time scale property 
(unknown)

y is the vector of outputs.
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Literature Survey

Nonlinear Two-Time Scale System Analysis Mease et. al, (2003)

Tracking of slow variables using the composite of:
– Tracking controller for the slow subsystem,
– Stabilizing controller for the fast subsystem to restrict fast states onto a 

manifold

Global tracking results  guaranteed only if the manifold is unique
– Nonlinear in slow states and linear in fast states, Li (2009)
– Assume unique manifold, Grujic (1988), Choi (2005)

For general nonlinear systems local stability  proven:
– Assume the fast states as control variables for slow system, Menon (1987)
– Approximate manifold, Siddarth and Valasek (JGCD May-Jun 2011)

Simultaneous slow and fast tracking posed as optimal control problem, 
Arstein (1997)
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Challenges:
Nonlinear Singularly-Perturbed Model

Key Issues:
– Numerically stiff equations
– Fast states are restricted to lie on a manifold
– Global results valid only if  fast variables lie on a unique manifold

Approach:
– Model-reduction via Geometric Singular Perturbation Theory
– Use coordinate transformation and enforce the manifold to be exactly 

the fast state reference
– Composite control design 

Benefits:
– No assumptions on the class of nonlinear systems considered 
– Does not require computation of the manifold
– Global asymptotic tracking 
– No knowledge of the singular perturbation parameter required
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Geometric Singular Perturbation Theory
(Fenichel, 1979)

Develop reduced-order models. Substitute

Derivatives 
wrt fast 
time-scale τ

Derivatives 
wrt slow 
time scale t
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Geometric Singular Perturbation Theory
Reduced-order models approximate the behaviour of the complete 
system 

--Complete
-- Slow Subsystem
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Geometric Singular Perturbation Theory
Insights From The Geometric Approach

• Complete  system (in blue) approximated by dynamics of slow 
subsystem (in pink) and fast subsystem (in black).

• if complete system locally flattened it falls onto dynamics of the 
slow sub-system.  

• Manifold is described by solution of the algebraic equation when 
substituting epsilon = 0 in complete system. 

• Dynamics on manifold governed by differential equations of slow 
subsystem which is exactly the dynamics of the slow variables. 

• Fast dynamics need to lie on the manifold.
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Geometric Singular Perturbation Theory
Insights From The Geometric Approach

Key Idea: Tracking of both slow and fast states is achieved
if and only if the manifold is exactly the reference trajectory
of the fast states.
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Mathematical Formulation of the Control Law

Complete Model:

Tracking errors:

Transform the equilibrium to origin:
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Step 1. Obtain Reduced-Order Models

Reduced Slow Subsystem Reduced Fast Subsystem
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Step 2. Design Controller for Slow Subsystem
Force origin as the equilibrium of the closed-loop slow subsystem
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Step 3. Design Controller for Fast Subsystem
To make sure the manifold is stable for all time, 
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Step 4. Composite Control Design

Composite Control:

Or, 
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Lyapunov Analysis
Lyapunov Function Candidate:

Time derivative about closed-loop dynamics:

If             ,

Or, 

Thus, global exponential stability can be concluded. 
Or 
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Numerical Example 

Nonlinear, six degree-of-freedom F/A-18A Hornet written in the 
stability axis.

Slow states: 

Fast states:

Control Variables:

Objective: Aggressive vertical climb with maximum pitch rate of 
25deg/sec followed by roll at a rate of 50deg/sec with sideslip angle 
constrained to zero throughout.

[ , , , , , ]TM α β φ θ ψ=x

[ , , ]Tp q r=z

[ ], , , T
e a ru η δ δ δ=
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Aircraft Trajectory



24

Angular Rates and Control Deflections
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Response of Slow State States 
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Summary and Conclusions

Developed tracking controllers to simultaneously track slow and fast 
states for nonlinear singularly perturbed system using geometric 
singular perturbation theory as a model-reduction technique
Controller is implemented without making any assumptions about 
the nonlinear model and does not require knowledge of the 
perturbation parameter. 
Consistent tracking guaranteed independent of the reference 
trajectory.
Global asymptotic tracking demonstrated even though the reference 
trajectory requires airplane to switch between linear and nonlinear 
regimes.
All closed-loop signals were bounded and control deflections 
computed were smooth. 
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Future Research Extensions
Global stabilization without tracking fast states
– How can global results be asserted? (Siddarth & Valasek, ACC 2011)

Extensions for systems nonlinear in control
– Current work assumes the control appears linearly

Non-minimum  phase system control architecture
– Take advantage of the multiple-time scale behaviour of aircraft 

(Siddarth & Valasek,  AIAA GNC 2011)

Autonomous control of Highly Reconfigurable Structures
– Adaptive-Reinforcement Learning (Valasek et.al, 2004, 2006)
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