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Abstract The problem of simultaneous tracking of both fast and slow states for a
general class of nonlinear singularly perturbed systems isaddressed. A motivating
example is an aircraft tracking a prescribed fast moving target, while simultane-
ously regulating speed and/or one or more kinematic angles.Previous results in the
literature have focused on tracking outputs that are a function of the slow states
alone. Moreover, global asymptotic tracking has been demonstrated only for a class
of nonlinear systems that possess a unique real root for the fast states. For a more
general class of nonlinear systems only local tracking results have been proven.
In this paper, control laws that accomplish global trackingof both fast and slow
states is developed using geometric singular perturbationmethods. Global exponen-
tial stability is proven using the composite Lyapunov function approach and an up-
per bound necessary condition for the scalar perturbation parameter is derived. Con-
troller performance is demonstrated through simulation ofa combined longitudinal
lateral/directional maneuver for a nonlinear, coupled, six degree-of-freedom model
of the F/A-18A Hornet. Results presented in the paper show that the controller ac-
complishes global asymptotic tracking even though the desired reference trajectory
requires the aircraft to switch between linear and nonlinear regimes. Asymptotic
tracking while keeping all the closed-loop signals boundedand well behaved is also
demonstrated. Additionally the controller is independentof the scalar perturbation
parameter nor does it require knowledge of it.

1 Introduction

This paper addresses systems that possess both slow and fastdynamics. This mul-
tiple time-scale behaviour is either a system characteristic (for example, aircraft
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and flexible beam structures) or arises due to implementation of a fast controller
(for example, systems with fast actuators and/or fast sensors). The control objective
is to develop a stable tracker for these two time-scale systems that would regulate
both slow and fast states simultaneously. The singular perturbation approach[13] has
been the foremost technique employed in the literature to examine the behaviour of
these two time-scale systems. In this approach, the system dynamics are approxi-
mated by two lower-order subsystems. The slow subsystem captures the dominant
phenomena assuming that the fast variables evolve infinitely many times faster, and
have settled down onto a manifold. The fast subsystem addresses the neglected phe-
nomena, and assumes that the slow variables remain constant. It has been shown that
the complete system behaviour can be approximated by the dynamics of the slow
subsystem provided the fast subsystem is uniformly asymptotically stable about the
manifold [6, 10]. These results of singular perturbation methods have made it the
most favourable model-reduction technique in the control literature[14].

The design of nonlinear tracking control laws for the slow variables using sin-
gular perturbation methods has received a lot of attention in the past. The typical
methodology is to design two separate controllers for each of the two subsystems,
and then apply their composite or sum to the full-order system. A tracking control
law is designed for the slow subsystem whereas a stabilizingcontroller is designed
for the fast subsystem. This is done to restrict the fast variables onto a manifold.
Global asymptotic tracking of the composite control structure is guaranteed only if
the manifold is unique. This manifold is the set of fixed points of the fast dynamics
expressed as a smooth function of the slow variables and the control inputs; hence
it is not always unique. To enforce the uniqueness condition, previous studies in the
literature have:

1. Assumed that the system has a unique manifold[4, 8]
2. Considered nonlinear systems that have a unique manifold. This is satisfied by

two time-scale systems that are nonlinear in the slow statesand linear in the fast
states[11]

For a general class of nonlinear systems such as aircraft, approximate approaches
that guarantee local stability have been proposed. One approach is to consider the
fast variables as control inputs for the slow subsystem. Reference[12] used this
approach to design nonlinear flight test trajectories for velocity, angle-of-attack,
sideslip angle and altitude by using the fast angular rates as the control variables.
This control was augmented with an outer-loop controller that determines the con-
trol surface deflections needed to ensure that the angular rates track the output of
the inner-loop. More recently the same concept has been employed for the control
of generic reentry vehicles[7]. Another approach proposedin Reference[16] consid-
ered the general class of nonlinear singularly perturbed systems and computed local
approximations of the manifold that helped conclude local stability for the complete
system.

All of the approaches discussed above demonstrate slow state tracking either lo-
cally or globally by restricting the fast states, and, they address the output tracking
problem for two time-scale systems with fast actuators. Butfor systems whose dy-
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namics inherently possess different time-scales, both theslow and the fast states
constitute the output vector. For example, during air combat maneuvering an air-
craft is typically required to track a fast moving target while regulating speed (slow
variable) and/or one or more kinematic and aerodynamic angles. In this case the fast
states cannot be restricted to simply stabilize onto a manifold. The reduced-order
approach therefore appears to be inadequate for a general class of output track-
ing problem. Reference[1] formulated optimal control lawsto accomplish fast state
tracking using invariant measures for systems with oscillatory fast dynamics.

In this paper, state feedback control laws are developed fora general class of non-
linear singularly perturbed systems to accomplish slow andfast state tracking simul-
taneously. The paper makes two major contributions. First,the approach developed
here employs the reduced-order technique without imposingany assumptions about
the fast manifold. This is done by extending the previous work of the authors[16] so
as to not require computation of the manifold. Second, global exponential tracking
is proved using the composite Lyapunov approach[10]. From the stability analysis
it is shown that this approach applies to all classes of singularly perturbed systems,
with the global exponential stabilization results of a class of singularly perturbed
systems being a special case[3]. Additionally, the technique is independent of the
scalar perturbation parameter and an upper bound on this parameter is derived as a
necessary condition for stability results to hold. These results are demonstrated by
simulation for a nonlinear, coupled, six degree-of-freedom model of the F/A-18A
Hornet.

The paper is organized as follows. Section 2 mathematicallyformulates the con-
trol problem and briefly reviews the necessary concepts for model reduction from
geometric singular perturbation theory. Control laws and the main results of the pa-
per are detailed in Section 3. Section 4 presents simulationresults, and conclusions
are presented in Section 5.

2 Problem Formulation and Model Reduction

The following nonlinear singularly perturbed model represents the class of two time-
scale dynamical systems addressed in this paper

ẋ = f(x,z)+g(x,z)u (1)

ε ż = l(x,z)+k(x,z)u (2)

y =

[

x
z

]

(3)

wherex ∈ R
m is the vector of slow variables,z ∈ R

n is the vector of fast variables,
u ∈ R

p is the input vector andy ∈ R
m+n is the output vector.ε ∈ R

+ is the singu-
lar perturbation parameter that satisfies 0< ε << 1. The vector fieldsf(.),g(.), l(.)
andk(.) are assumed to be sufficiently smooth andp ≥ (m+n). The control objec-
tive is to drive the output so as to track sufficiently smooth,bounded, time-varying
trajectories, such thatx(t)→ xr(t) andz(t)→ zr(t) ast → ∞.
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2.1 Reduced-order Modeling

The singularly perturbed model considered in Eqs.1,2 is expressed in theslow time
scale t. In this time-scale the slow states evolve at an ordinary rate whereas the fast
states move at a rate ofO

(

1
ε
)

. This system can be equivalently expressed in thefast
time-scale τ such that the fast states evolve at an ordinary rate and the slow variables
move slowly at a rate ofO(ε)

x′ = ε [f(x,z)+g(x,z)u] (4)

z′ = l(x,z)+k(x,z)u (5)

where′ represents a derivative with respect toτ = t−t0
ε andt0 is the initial time. Ge-

ometric singular perturbation theory[6] examines the behaviour of these singularly
perturbed systems by studying the geometric constructs of reduced-order models
obtained by substitutingε = 0 in Eqs.1,2 and Eqs.4,5. This results in theReduced
Slow Subsystem

ẋ = f(x,z)+g(x,z)u (6)

0 = l(x,z)+k(x,z)u (7)

and theReduced Fast Subsystem

x′ = 0 (8)

z′ = l(x,z)+k(x,z)u (9)

The reduced slow subsystem is a locally flattened space of thecomplete system
(Eqs.1,2). Since the vector fields were assumed to be sufficiently smooth there ex-
ists a smooth diffeomorphism that maps the complete system onto this locally flat-
tened space. The set of points(x,z,u) ∈R

m ×R
n ×R

p is a smooth manifoldM0 of
dimensionm+ p that satisfies the algebraic Eq.7:

M0 : z = Z0(x,u) (10)

This set of points is identically the fixed points of the reduced fast subsystem (Eq.9).
Thus the manifoldM0 is invariant. The flow on this manifold is described by the
differential equation

ẋ = f(x,Z0(x,u))+g(x,Z0(x,u))u (11)

Fenichel[6] proved that the dynamics of a singularly perturbed system of the form
represented in Eqs.1,2 is constrained withinO(ε) of Eq.11 if the reduced fast sub-
system is stable aboutM0. If the dynamics of Eq.11 are locally asymptotically
stable about the manifold, then it can be concluded that the complete system is
also locally asymptotically stable. Global asymptotic stability conclusions about the
complete system can only be made if the manifold is unique, which is a result from
differential topology and center manifold theory [6].
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3 Control Formulation and Stability Analysis

The central idea in the development is the following. If the manifold is unique and
an asymptotically stable fixed point of the reduced fast subsystem, the complete
system follows the dynamics of the reduced slow subsystem globally. Therefore, for
a tracking problem addressed in this paper it is desired thatthis manifold lie exactly
on the desired fast state reference for all time.This condition can be enforced if the
nonlinear algebraic set of equations is augmented with a controller that enforces
the reference to be the unique manifold. Additionally, this controller should also be
capable of simultaneously driving the slow states to their specified reference. These
ideas are mathematically formulated and analyzed in the following subsections.

3.1 Control Law Development

The objective is to augment the two time-scale system with controllers such that
the system follows smooth, bounded, time-varying trajectories [xr(t),zr(t)]T . The
first step is to transform the problem into a non-autonomous stabilization control
problem. Define the tracking error signals as

e(t) = x(t)−xr(t) (12)

ξ (t) = z(t)− zr(t) (13)

Substituting Eqs.1,2, the tracking error dynamics are expressed as

ė = f(x,z)+g(x,z)u− ẋr , F(e,ξ ,xr,zr, ẋr)+G(e,ξ ,xr,zr)u (14)

εξ̇ = l(x,z)+k(x,z)u− ε żr , L(e,ξ ,xr,zr,ε żr)+K(e,ξ ,xr,zr)u (15)

The control law is formulated using the reduced-order models for the complete sta-
bilization problem, which is obtained using the procedure developed in Section 2.
Reduced Slow Subsystem

ė = F(e,ξ ,xr,zr, ẋr)+G(e,ξ ,xr,zr)u0 (16)

0 = L(e,ξ ,xr,zr,0)+K(e,ξ ,xr,zr)u0 (17)

Reduced Fast Subsystem

e′ = 0 (18)

ξ ′ = L(e,ξ ,xr,zr,z′r)+K(e,ξ ,xr,zr)(u0+u f ) (19)

It is known that the fast tracking errorξ will settle onto the manifold that is a func-
tion of the errore and control inputu, which may not necessarily be the origin.
To steer both errors to the origin, the control input must be designed such that the
origin becomes the unique manifold of the reduced slow system (Eqs.16,17). There-
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fore, the slow controlleru0 is designed to take the form
[

G(e,ξ ,xr,zr)
K(e,ξ ,xr,zr)

]

u0 =−

[

F(e,ξ ,xr,zr, ẋr)
L(e,ξ ,xr,zr,0)

]

+

[

Aee
Aξ ξ

]

(20)

whereAe andAξ specify the desired closed-loop characteristics. With this choice of
slow control, the reduced fast subsystem becomes

e′ = 0 (21)

ξ ′ = L(e,ξ ,xr,zr,z′r)−L(e,ξ ,xr,zr,0)+Aξ ξ +K(e,ξ ,xr,zr)u f (22)

To stabilize the fast subsystem, the fast controlu f is designed as

[

G(e,ξ ,xr,zr)
K(e,ξ ,xr,zr)

]

u f =

[

0
L(e,ξ ,xr,zr,0)−L(e,ξ ,xr,zr,z′r)

]

(23)

Thus, the composite controlu = u0+u f satisfies

[

G(e,ξ ,xr,zr)
K(e,ξ ,xr,zr)

]

u =−

[

F(e,ξ ,xr,zr, ẋr)
L(e,ξ ,xr,zr,z′r)

]

+

[

Aee
Aξ ξ

]

(24)

assuming that the rank of

[

G(.)
K(.)

]

≥ (m+n).

The complete closed-loop and reduced slow subsystem for this control law are given
as

ė = Aee (25)

εξ̇ = Aξ ξ . (26)

and

ė = Aee (27)

0 = Aξ ξ . (28)

respectively. Observe that with the proposed control law the nonlinear algebraic set
of equations (Eq.17) have been transformed to a linear set ofequations (Eq.28).
With the proper choice ofAξ , it is guaranteed thatξ = 0 is the unique manifold for
both the complete and the reduced slow subsystems. Furthermore, this manifold is
exponentially stable as can be deduced from the reduced fastsubsystem

e′ = 0 (29)

ξ ′ = Aξ ξ (30)
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Remark 1 The control law proposed in Eq.24 is independent of the perturbation
parameterε. Furthermore it is a function ofz′r that implies that the
reference trajectory chosen for the fast states must be faster when com-
pared to the reference of the slow states. Additionally, as for all singular
perturbation techniques to work the closed-loop eigenvaluesAe andAξ
must be chosen so as to maintain the time-scale separation.

3.2 Stability Analysis

Complete system stability is analyzed using the composite Lyapunov function
approach[10]. Suppose that there exist positive definite Lyapunov functionsV (t,e)=
eT e and W (t,ξ ) = ξ T ξ for the reduced subsystems, with continuous first-order
derivatives satisfying the following properties:

1. V (t,0) = 0 andγ1||e||2 ≤V (t,e)≤ γ2||e||2 ∀t ∈ R
+,e ∈ R

m,γ1 = γ2 = 1,
2. (∇eV (t,e))T Aee ≤−α1eT e, α1 = 2|λmin(Ae)|,
3. W (t,0) = 0 andγ3||ξ ||2 ≤W (t,ξ )≤ γ4||ξ ||2 ∀t ∈ R

+,ξ ∈ R
n,γ3 = γ4 = 1,

4. (∇ξW (t,ξ ))T Aξ ξ ≤−α2ξ T ξ , α2 = 2|λmin(Aξ )|.

Next, consider the composite Lyapunov functionν(t,e,ξ ) : R+×R
m ×R

n → R
+

defined by the weighted sum ofV (t,e) andW (t,ξ ) for the complete closed-loop
system

ν(t,e,ξ ) = (1−d)V (t,e)+dW (t,ξ ), 0< d < 1 (31)

The derivative ofν(t,e,ξ ) along the closed-loop trajectories Eqs.25,26 is given by

ν̇ = (1−d)(∇eV )T ė+d(∇ξW )T ξ̇ (32)

ν̇ = (1−d)(∇eV )T Aee+
d
ε
(∇ξW )T Aξ ξ (33)

ν̇ ≤ −(1−d)α1eT e−
d
ε

α2ξ T ξ (34)

ν̇ ≤ −

[

e
ξ

]T [
(1−d)α1 0

0 d
ε α2

][

e
ξ

]

(35)

Following the approach proposed in Reference[3], add and subtract 2αν(t,e,ξ ) to
Eq.35 to get

ν̇ ≤−

[

e
ξ

]T [
(1−d)α1 0

0 d
ε α2

][

e
ξ

]

+2α(1−d)V +2αdW −2αν (36)

whereα > 0. Substitute in Eq.36 for the Lyapunov functionsV (t,e) andW (t,ξ ) to
get
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ν̇ ≤−

[

e
ξ

]T [
(1−d)α1−2α(1−d) 0

0 d
ε α2−2αd

][

e
ξ

]

−2αν (37)

If ε satisfies
ε < ε∗ =

α2

2α
(38)

and providedα1 > 2α, then from the definitions ofα2, α, andd it can be concluded
that the matrix in Eq.37 is positive definite. Then the derivative of the Lyapunov
function is lower-bounded by

ν̇ ≤−2αν (39)

Since the composite Lyapunov function lies within the following bounds

(1−d)γ1||e||2+dγ3||ξ ||2 ≤ ν(t,e,ξ )≤ (1−d)γ2||e||2+dγ4||ξ ||2 (40)

or,

γ11

∣

∣

∣

∣

∣

∣

∣

∣

[

e
ξ

]∣

∣

∣

∣

∣

∣

∣

∣

2

≤ ν(t,e,ξ )≤ γ22

∣

∣

∣

∣

∣

∣

∣

∣

[

e
ξ

]∣

∣

∣

∣

∣

∣

∣

∣

2

(41)

whereγ11=min((1−d)γ1,dγ3) andγ22=min((1−d)γ2,dγ4), the derivative of the
Lyapunov function can be expressed as

ν̇ ≤−2αγ11

∣

∣

∣

∣

∣

∣

∣

∣

[

e
ξ

]∣

∣

∣

∣

∣

∣

∣

∣

2

(42)

From the definition of the constantsγ11, γ22, andα, and invoking Lyapunov’s Di-
rect Method[9],uniform exponential stability in the large of (e = 0,ξ = 0) can be
concluded. Furthermore, since the reference trajectoryxr(t) andzr(t) is bounded, it
is concluded that the statesx(t)→ xr(t) andz(t)→ zr(t) ast → ∞. Since the matrix
[

G(.)
K(.)

]

is restricted to be full rank, examining the expression foru in Eq.24 it is

concluded thatu ∈ L∞.

Remark 2 Recall that for the special case of state regulationthe system dynamics
in Eqs.14,15 become autonomous. In such a case, the result ofglobal
exponential stability is obtained with less-restrictive conditions on the
Lyapunov functionsV (e), W (ξ ), and consequentlyν(e,ξ ). Similar
conclusions were made in Reference[3] for the stabilization problem
of a special class of singularly perturbed systems where thecontrol
affects only the fast states. Note that for the special classof systems
considered in Reference[3], the non-diagonal elements of the matrix in
Eq.37 are nonzero, and the bound on the parameterε is slightly differ-
ent.
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Remark 3 From Eq.37, a conservative upper bound forα is α <
α1
2 , and conse-

quentlyε∗ ≈ α2
α1

. Therefore, qualitatively this upper bound is indirectly
dependent upon the choice of the closed-loop eigenvalues.

4 Numerical Simulation

The purpose of the example is to demonstrate the methodologyand controller per-
formance for an under-actuated, nonlinear, singularly perturbed system. The system
studied is a nonlinear, coupled, six degree-of-freedom F/A-18A Hornet aircraft[5].
The combined longitudinal-lateral/directional maneuverrequires tracking of the fast
variables, in this case body-axis pitch and roll rates, while maintaining zero sideslip
angle. Closed-loop characteristics such as stability, accuracy, speed of response and
robustness are qualitatively analyzed. The maneuver consists of an aggressive verti-
cal climb with a pitch rate of 25 deg/sec, followed by a roll ata rate of 50 deg/sec,
while maintaining zero sideslip angle. The Mach number and angle-of-attack are
assumed to be input-to-state stable. The initial conditions are a Mach number of
0.4 at 15,000 feet, an angle-of-attack of 10 deg, and elevon angle of−11.85 deg.
All other states are zero. The F/A-18A Hornet model is expressed in stability axes.
Since it is difficult to cast the nonlinear aircraft model into the singular perturbation
form of Eq.1-2 , the perturbation parameterε is introduced in front of those state
variables that have the fastest dynamics. This is done so that the results obtained for
ε = 0 will closely approximate the complete system behaviour (with ε = 1). This is
called the forced perturbation technique, and is commonly used in the aircraft liter-
ature [2, 12]. Motivated by experience and previous results, the six slow states are
Mach numberM, angle-of-attackα, sideslip angleβ and the three kinematic states:
bank angleφ , pitch-attitude angleθ , and heading angleψ. The three body-axis an-
gular rates(p,q,r) constitute the fast states. The control variables for this model are
elevonδe, aileronδa, and rudderδr and are assumed to have sufficiently fast enough
actuator dynamics. The convention used is that a positive deflection generates a neg-
ative moment. The throttleη is maintained constant at 80%, because slow engine
dynamics require introduction of an additional time-scalein the analysis; this is a
consideration which is beyond the scope of this paper. The aerodynamic stability
and control derivatives are represented as nonlinear analytical functions of aerody-
namic angles and control surface deflections. Quaternions are used to represent the
kinematic relationships from which the Euler angles are extracted. The details of
these relationships are discussed in Reference[15].

Results and Discussion

Simulation results in Figures 1-6 show that all controlled states closely track their
references. At two seconds the aircraft is commanded to perform a vertical climb,
and after eight seconds the pitch rate command changes direction and Mach num-
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ber drops. The lateral/directional states and controls areidentically zero until the
roll command is introduced at time equals 15 seconds. Observe that all of the states
asymptotically track the reference. Figure 2 shows that theelevon deflection re-
mains within specified limits[5] throughout the vertical climb, and the commanded
roll produces a sideslip angle which is negated by application of the rudder. The
aileron and the rudder deflections remain within bounds while the aircraft rolls and
comes back to level flight. The maximum pitch-attitude angleis 81 deg, maximum
bank angle is 81 deg (Figure 4), and the maximum sideslip error is ±4deg. The
quaternions and the complete trajectory are shown in Figures 5 and 6 respectively.
From Figure 6, note that after completing the combined climband roll maneuver,
the aircraft is commanded to remain at zero sideslip angle, roll rate, and pitch rate.
It then enters a steady dive with all other aircraft states bounded. The controller re-
sponse is judged to be essentially independent of the reference trajectory designed.
The robustness properties of the controller are quantified by the upper boundε∗. For
this example, the design variables ared = 0.5, α1 = 10,α = 2, andα2 = 15, so the
upper bound becomesε∗ = 7.5. Therefore for allε < ε∗ global asymptotic tracking
is guaranteed and in this caseε = 1.
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5 Conclusions

A control law for global asymptotic tracking of both the slowand the fast states for a
general class of nonlinear singularly perturbed systems was developed. A composite
control approach was adopted to satisfy two objectives. First, it enforces the speci-
fied reference for the fast states to be ‘the unique manifold’of the fast dynamics for
all time. Second, it ensures that the slow states are trackedsimultaneously as desired.
Stability of the closed-loop signals was analyzed using thecomposite Lyapunov ap-
proach, and controller performance was demonstrated through numerical simulation
of a nonlinear, coupled, six degree-of-freedom model of an F/A-18A Hornet. The
control laws were implemented without making any assumptions about the nonlin-
earity of the six degree-of-freedom aircraft model. Based on the results presented
in the paper, the following conclusions are drawn. First, both positive and nega-
tive angular rate commands were seen to be perfectly trackedby the controller and
consistent tracking was guaranteed independent of the desired reference trajectory.
Second, throughout the maneuver the controller demonstrated global asymptotic
tracking even though the desired reference trajectory requires the aircraft to switch
between linear and nonlinear regimes. This robust performance of the controller was
shown to hold for allε < ε∗ = 7.5. Third, all closed-loop signals were bounded and
the control surface deflections computed were smooth and within specified limits.
Fourth, this technique does not require the knowledge of theperturbation parameter
ε. This is an important consideration for systems such as aircraft, where quantifying
this parameter can be difficult.
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