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Global Tracking Control Structuresfor
Nonlinear Singularly Perturbed Aircraft
Systems

Anshu Siddarth and John Valasek

Abstract The problem of simultaneous tracking of both fast and slatestfor a
general class of nonlinear singularly perturbed systeraslisessed. A motivating
example is an aircraft tracking a prescribed fast movingagrwhile simultane-
ously regulating speed and/or one or more kinematic anBlesious results in the
literature have focused on tracking outputs that are a immaif the slow states
alone. Moreover, global asymptotic tracking has been detnated only for a class
of nonlinear systems that possess a unique real root fomtestates. For a more
general class of nonlinear systems only local trackinglte$wave been proven.
In this paper, control laws that accomplish global trackiridhoth fast and slow
states is developed using geometric singular perturbatigthods. Global exponen-
tial stability is proven using the composite Lyapunov fuoctapproach and an up-
per bound necessary condition for the scalar perturbatoarpeter is derived. Con-
troller performance is demonstrated through simulatioa cdbmbined longitudinal
lateral/directional maneuver for a nonlinear, couplexd dgigree-of-freedom model
of the F/A-18A Hornet. Results presented in the paper shaivttte controller ac-
complishes global asymptotic tracking even though thereéseference trajectory
requires the aircraft to switch between linear and nonlimegimes. Asymptotic
tracking while keeping all the closed-loop signals bounaied well behaved is also
demonstrated. Additionally the controller is independefithe scalar perturbation
parameter nor does it require knowledge of it.

1 Introduction

This paper addresses systems that possess both slow adgirfastics. This mul-
tiple time-scale behaviour is either a system characierfir example, aircraft
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and flexible beam structures) or arises due to implementatica fast controller
(for example, systems with fast actuators and/or fast sejsthe control objective
is to develop a stable tracker for these two time-scale systlat would regulate
both slow and fast states simultaneously. The singulaup®tion approach[13] has
been the foremost technique employed in the literature aonéxe the behaviour of
these two time-scale systems. In this approach, the sysyeanucs are approxi-
mated by two lower-order subsystems. The slow subsystemrespthe dominant
phenomena assuming that the fast variables evolve infinitehy times faster, and
have settled down onto a manifold. The fast subsystem askBdlse neglected phe-
nomena, and assumes that the slow variables remain caristeast been shown that
the complete system behaviour can be approximated by thentgs of the slow
subsystem provided the fast subsystem is uniformly asytieptty stable about the
manifold [6, 10]. These results of singular perturbatiorthods have made it the
most favourable model-reduction technique in the coniteldture[14].

The design of nonlinear tracking control laws for the slowialles using sin-
gular perturbation methods has received a lot of attentidimé past. The typical
methodology is to design two separate controllers for ed¢heotwo subsystems,
and then apply their composite or sum to the full-order syst& tracking control
law is designed for the slow subsystem whereas a stabilcngyoller is designed
for the fast subsystem. This is done to restrict the fastaldes onto a manifold.
Global asymptotic tracking of the composite control stuuetis guaranteed only if
the manifold is unique. This manifold is the set of fixed psiot the fast dynamics
expressed as a smooth function of the slow variables andotiteot inputs; hence
it is not always unique. To enforce the uniqueness condipogvious studies in the
literature have:

1. Assumed that the system has a unique manifold[4, 8]

2. Considered nonlinear systems that have a unique manifbid is satisfied by
two time-scale systems that are nonlinear in the slow sgatddinear in the fast
states[11]

For a general class of nonlinear systems such as aircrafto@mate approaches
that guarantee local stability have been proposed. Oneagipiis to consider the
fast variables as control inputs for the slow subsystemeiRete[12] used this
approach to design nonlinear flight test trajectories fdoaity, angle-of-attack,
sideslip angle and altitude by using the fast angular radebe control variables.
This control was augmented with an outer-loop controllat thetermines the con-
trol surface deflections needed to ensure that the angu&s tack the output of
the inner-loop. More recently the same concept has beenogetbfor the control
of generic reentry vehicles[7]. Another approach propas&ktference[16] consid-
ered the general class of nonlinear singularly perturbeteays and computed local
approximations of the manifold that helped conclude lotabisity for the complete
system.

All of the approaches discussed above demonstrate slogvtstaking either lo-
cally or globally by restricting the fast states, and, thdgrass the output tracking
problem for two time-scale systems with fast actuators.fBusystems whose dy-
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namics inherently possess different time-scales, botfsling and the fast states
constitute the output vector. For example, during air camnmbaneuvering an air-
craft is typically required to track a fast moving target lghiegulating speed (slow
variable) and/or one or more kinematic and aerodynamiceangt this case the fast
states cannot be restricted to simply stabilize onto a mk&hifThe reduced-order
approach therefore appears to be inadequate for a genasal af output track-
ing problem. Reference[1] formulated optimal control laawsiccomplish fast state
tracking using invariant measures for systems with ogoifjafast dynamics.

In this paper, state feedback control laws are developegideneral class of non-
linear singularly perturbed systems to accomplish slowfasistate tracking simul-
taneously. The paper makes two major contributions. Rhistapproach developed
here employs the reduced-order technique without impasirygassumptions about
the fast manifold. This is done by extending the previouskedithe authors[16] so
as to not require computation of the manifold. Second, dlekponential tracking
is proved using the composite Lyapunov approach[10]. Floarstability analysis
it is shown that this approach applies to all classes of samtyuperturbed systems,
with the global exponential stabilization results of a sla$ singularly perturbed
systems being a special case[3]. Additionally, the teamig independent of the
scalar perturbation parameter and an upper bound on thasneéer is derived as a
necessary condition for stability results to hold. Thesaiits are demonstrated by
simulation for a nonlinear, coupled, six degree-of-freadoodel of the F/A-18A
Hornet.

The paper is organized as follows. Section 2 mathematiéadiyiulates the con-
trol problem and briefly reviews the necessary concepts fadtehreduction from
geometric singular perturbation theory. Control laws dredrhain results of the pa-
per are detailed in Section 3. Section 4 presents simulatisuits, and conclusions
are presented in Section 5.

2 Problem Formulation and Model Reduction

The following nonlinear singularly perturbed model regres the class of two time-
scale dynamical systems addressed in this paper

x = f(X,2) +9(x,z)u Q)
ez =1(x,2)+k(x,z)u 2
v=4] ©)

wherex € RM is the vector of slow variableg,c R" is the vector of fast variables,
u € RP is the input vector angt € R™™" is the output vectore € R is the singu-
lar perturbation parameter that satisfies @ << 1. The vector field$(.),g(.),I(.)
andk(.) are assumed to be sufficiently smooth gng (m+ n). The control objec-
tive is to drive the output so as to track sufficiently smodidwinded, time-varying
trajectories, such that(t) — x(t) andz(t) — z(t) ast — co.
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2.1 Reduced-order Modeling

The singularly perturbed model considered in Egs.1,2 isesged in thalow time
scalet. In this time-scale the slow states evolve at an ordinaky wditereas the fast
states move at a rate O‘(%) This system can be equivalently expressed irfalse
time-scale T such that the fast states evolve at an ordinary rate anddwevakriables
move slowly at a rate dD(¢€)

X' = e[f(x,2) +9(x,2)u] (4)
Z =1(x,2) +k(x,2)u (5)
where’ represents a derivative with respectrte: % andty is the initial time. Ge-
ometric singular perturbation theory[6] examines the biha of these singularly
perturbed systems by studying the geometric constructedifaed-order models
obtained by substituting = 0 in Eqgs.1,2 and Egs.4,5. This results in Reeluced
Sow Subsystem

x = f(x,2) +9g(x,z)u (6)
0=1I(x,z) +k(x,z)u (7)

and theReduced Fast Subsystem

X' =0 (8)
Z =1(x,2) +k(x,2)u 9)

The reduced slow subsystem is a locally flattened space ofdhwplete system
(Egs.1,2). Since the vector fields were assumed to be suffigcismooth there ex-
ists a smooth diffeomorphism that maps the complete systemthis locally flat-
tened space. The set of poifisz,u) € R™ x R" x RP is a smooth manifold# of
dimensionm+ p that satisfies the algebraic Eq.7:

Mo 2= Zp(X,u) (20)

This set of points is identically the fixed points of the regdiast subsystem (Eq.9).
Thus the manifold# is invariant. The flow on this manifold is described by the
differential equation

X =Tf(X,Zo(X,u))+9g(X,Zo(X,u))u (11)

Fenichel[6] proved that the dynamics of a singularly pdmtgr system of the form
represented in Egs.1,2 is constrained witbifz) of Eq.11 if the reduced fast sub-
system is stable abou#). If the dynamics of Eq.11 are locally asymptotically
stable about the manifold, then it can be concluded that timeptete system is
also locally asymptotically stable. Global asymptotiddtsy conclusions about the
complete system can only be made if the manifold is uniquégtwis a result from
differential topology and center manifold theory [6].
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3 Control Formulation and Stability Analysis

The central idea in the development is the following. If thenifold is unique and
an asymptotically stable fixed point of the reduced fast ystieen, the complete
system follows the dynamics of the reduced slow subsystetvadly. Therefore, for
a tracking problem addressed in this paper it is desiredhiwmanifold lie exactly
on the desired fast state reference for all tiffi@s condition can be enforced if the
nonlinear algebraic set of equations is augmented with a controller that enforces
the reference to be the unique manifold. Additionally, this controller should also be
capable of simultaneously driving the slow states to the#cHied reference. These
ideas are mathematically formulated and analyzed in theviolg subsections.

3.1 Control Law Development

The objective is to augment the two time-scale system withitrotiers such that
the system follows smooth, bounded, time-varying trajgesdx; (t),z (t)]". The

first step is to transform the problem into a non-autonomaalilization control
problem. Define the tracking error signals as

e(t) = X(t) — (1) (12)
Z(t) — z(t) (13)
Substituting Eqgs.1,2, the tracking error dynamics areesged as

e=f(x,2) +9(x,2)u—X = F(e,& X, 2, %) + G(& &, %,z )u (14)
€€ =1(x,2) +k(x,2)u—€z = L(e&,Xr,2,82 )+ K(€ & X,z )u  (15)
The control law is formulated using the reduced-order metteithe complete sta-

bilization problem, which is obtained using the procedwreadoped in Section 2.
Reduced Sow Subsystem

é: F(G»E,anraxr)+G(e7faxrvzr)uo (16)
0: L(e7E7XI’7Zr70)+K(eaEaerzr)u0 (17)
Reduced Fast Subsystem
€=0 (18)
&' =L(e& x,z,2)+K(e& %, z)(Up+Ur) (19)

It is known that the fast tracking errdrwill settle onto the manifold that is a func-
tion of the errore and control inputu, which may not necessarily be the origin.
To steer both errors to the origin, the control input must ésighed such that the
origin becomes the unique manifold of the reduced slow sy$kxs.16,17). There-
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fore, the slow controlleug is designed to take the form

Gled.xz) |, _  [F(e&xz.X) Ace
|:K(e7fyxrazr):| do=- |: L(e7E7XI’aZT70) :| + |:A§E:| (20)

whereAe andAs specify the desired closed-loop characteristics. With thioice of
slow control, the reduced fast subsystem becomes

€-0 1)
El = L(e7E7Xr?Zr’Z?) - L(e7E,Xr,Zr,O)+AEE+K(e,E,Xr,Zr)Uf (22)

To stabilize the fast subsystem, the fast controls designed as

[G(e,E,xhzr)

0
K(e7EaXr7ZI'):| Uf - [L(e,E,Xr,Zr,O)—L(e,E,Xr,Zr,Zlc)] (23)

Thus, the composite contral= ug + u; satisfies

G(e,E,Xr,Zr) _ F(eag,xrazl’)kr) Aee
{waxnaﬂu__{u&amlndﬂ+[&f] (24)

assuming that the rank r{fS(')] > (m+n).

()

The complete closed-loop and reduced slow subsystem gocdinitrol law are given
as

e=Ae (25)
€& = A€ (26)
and
e=Ae (27)
0=A. (28)

respectively. Observe that with the proposed control laawibnlinear algebraic set
of equations (Eq.17) have been transformed to a linear setjeétions (Eq.28).
With the proper choice oA, it is guaranteed that = 0 is the unique manifold for
both the complete and the reduced slow subsystems. Furdherthis manifold is
exponentially stable as can be deduced from the reducesasystem

€—0 (29)
& =A& (30)
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Remark 1  The control law proposed in Eq.24 is independertte@perturbation
parametere. Furthermore it is a function af; that implies that the
reference trajectory chosen for the fast states must berfaken com-
pared to the reference of the slow states. Additionallypaalf singular
perturbation techniques to work the closed-loop eigemsd andA;
must be chosen so as to maintain the time-scale separation.

3.2 Stability Analysis

Complete system stability is analyzed using the composy@punov function
approach[10]. Suppose that there exist positive definisg@lyov function¥ (t,e) =

ee and W(t, &) = ETE for the reduced subsystems, with continuous first-order
derivatives satisfying the following properties:

1 V(t,0) =0 andy||e]|>? <V(t,e) < plle]PVt € RT,ec R™, y1 = o =1,
2. (OeV(t,€)TAe< —aieTe, a1 = 2Amin(Ae)],

3 W(t,0) = 0 andys||&[[2 <W(t,&) < yal|E|PVt e RT,E € RN ys =y =1
4. (OgW(t,8))TAE < —a28TE, a2 =2Amin(Ag)].

Next, consider the composite Lyapunov functieft,e, &) : RT™ x R™x R" — R+
defined by the weighted sum ®f(t,e) andW(t, &) for the complete closed-loop
system

v(t,e &) = (1—d)V(t,e) +dW(t,&), 0<d<1 (31)

The derivative ofv(t,e, &) along the closed-loop trajectories Eqs.25,26 is given by

= (1—d)(0eV)Te+d(0;W)TE (32)

= (1—d)(0eV) " Ace+ g(ugwagE (33)

V< —(1-d)ae’e— gaszE (34)
T

o< [ [0 2 [ -

Following the approach proposed in Reference[3], add ahttaet 27v(t,e &) to
Eq.35 to get

it

wherea > 0. Substitute in Eq.36 for the Lyapunov functiong, e) andW(t, &) to
get

+20(1-d)V+2adW—-2av  (36)
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T
) e (1-d)or —2a(1-d) 0 e
vg[f] { 0 A, 2ad | | € —2av (37)
If € satisfies >
E<E = 2% (38)

and providedr; > 2a, then from the definitions af,, a, andd it can be concluded
that the matrix in Eq.37 is positive definite. Then the denaof the Lyapunov
function is lower-bounded by

v<-—2av (39)
Since the composite Lyapunov function lies within the faliog bounds

(1—d)yille]* +dysl[E]° < v(t.e &) < (L-d)yollel* +dyl|E][>  (40)

< <
¢ ¢
whereyi1 =min((1—d)y, dys) andys2 = min((1—d)y,dya), the derivative of the
Lyapunov function can be expressed as

<)

¢

From the definition of the constanys;, y»2, anda, and invoking Lyapunov’s Di-
rect Method[9],uniform exponential stability in the large of (e=0,& = 0) can be
concluded. Furthermore, since the reference trajectary) andz, (t) is bounded, it
is concluded that the state@) — X, (t) andz(t) — z(t) ast — co. Since the matrix
{G(.)
K(.)

concluded thatl € £.

or,

2
< V(t7e7€) < Y22

2

i1 (41)

2

v < —20v11 (42)

is restricted to be full rank, examining the expressionuan Eq.24 it is

Remark 2 Recall that for the special case of state regul#ti®system dynamics
in Egs.14,15 become autonomous. In such a case, the reg it
exponential stability is obtained with less-restrictivwnditions on the
Lyapunov functionsV (e), W(&), and consequently (e, &). Similar
conclusions were made in Reference[3] for the stabilirafipoblem
of a special class of singularly perturbed systems wherecdimgrol
affects only the fast states. Note that for the special adddsystems
considered in Reference[3], the non-diagonal elementseofitatrix in
Eq.37 are nonzero, and the bound on the parangateslightly differ-
ent.
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Remark 3 From Eq.37, a conservative upper boundxfis a < % and conse-

quentlye* ~ % Therefore, qualitatively this upper bound is indirectly

dependent upon the choice of the closed-loop eigenvalues.

4 Numerical Simulation

The purpose of the example is to demonstrate the methodalodcontroller per-
formance for an under-actuated, nonlinear, singularlyupleed system. The system
studied is a nonlinear, coupled, six degree-of-freedomEBA Hornet aircraft[5].
The combined longitudinal-lateral/directional maneuweguires tracking of the fast
variables, in this case body-axis pitch and roll rates, vhihintaining zero sideslip
angle. Closed-loop characteristics such as stabilityraoy, speed of response and
robustness are qualitatively analyzed. The maneuver stsredian aggressive verti-
cal climb with a pitch rate of 25 deg/sec, followed by a rolbatate of 50 deg/sec,
while maintaining zero sideslip angle. The Mach number amgleaof-attack are
assumed to be input-to-state stable. The initial conditiare a Mach number of
0.4 at 15000 feet, an angle-of-attack of 10 deg, and elevon angleldf85 deg.
All other states are zero. The F/A-18A Hornet model is exgedsn stability axes.
Since it is difficult to cast the nonlinear aircraft modekitihe singular perturbation
form of Eq.1-2 , the perturbation parameteis introduced in front of those state
variables that have the fastest dynamics. This is done sththaesults obtained for
& = 0 will closely approximate the complete system behaviouth(&= 1). This is
called the forced perturbation technique, and is commosédun the aircratft liter-
ature [2, 12]. Motivated by experience and previous resthits six slow states are
Mach numbeM, angle-of-attackx, sideslip anglg8 and the three kinematic states:
bank anglep, pitch-attitude anglé, and heading anglgg. The three body-axis an-
gular rateg p,q,r) constitute the fast states. The control variables for todehare
elevonde, ailerond,, and rudded; and are assumed to have sufficiently fast enough
actuator dynamics. The convention used is that a positifleai®n generates a neg-
ative moment. The throttlg is maintained constant at 80%, because slow engine
dynamics require introduction of an additional time-sdal¢he analysis; this is a
consideration which is beyond the scope of this paper. Thedgaamic stability
and control derivatives are represented as nonlinear callfunctions of aerody-
namic angles and control surface deflections. Quaterni@ssed to represent the
kinematic relationships from which the Euler angles areastéd. The details of
these relationships are discussed in Reference[15].

Results and Discussion
Simulation results in Figures 1-6 show that all controlléates closely track their

references. At two seconds the aircraft is commanded t@peré vertical climb,
and after eight seconds the pitch rate command changesidirend Mach num-



10 Anshu Siddarth and John Valasek

ber drops. The lateral/directional states and controlddeetically zero until the
roll command is introduced at time equals 15 seconds. Obgsbat all of the states
asymptotically track the reference. Figure 2 shows thatefegon deflection re-
mains within specified limits[5] throughout the verticaineb, and the commanded
roll produces a sideslip angle which is negated by appbtoatif the rudder. The
aileron and the rudder deflections remain within boundsenhié aircraft rolls and
comes back to level flight. The maximum pitch-attitude ang/l®1 deg, maximum
bank angle is 81 deg (Figure 4), and the maximum sideslipr ésre-4deg. The
quaternions and the complete trajectory are shown in Fghir@nd 6 respectively.
From Figure 6, note that after completing the combined clamf roll maneuver,
the aircraft is commanded to remain at zero sideslip anglesate, and pitch rate.
It then enters a steady dive with all other aircraft statased. The controller re-
sponse is judged to be essentially independent of the referteajectory designed.
The robustness properties of the controller are quantifigddupper bound*. For
this example, the design variables dre- 0.5, a; = 10,a = 2, anda, = 15, so the
upper bound becomes = 7.5. Therefore for alk < £* global asymptotic tracking
is guaranteed and in this case- 1.
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5 Conclusions

A control law for global asymptotic tracking of both the slawd the fast states for a
general class of nonlinear singularly perturbed systenssdeseloped. A composite
control approach was adopted to satisfy two objectivest Firenforces the speci-
fied reference for the fast states to be ‘the unique manifufithe fast dynamics for
alltime. Second, it ensures that the slow states are tragkadtaneously as desired.
Stability of the closed-loop signals was analyzed usingtiaposite Lyapunov ap-
proach, and controller performance was demonstrateddghroumerical simulation
of a nonlinear, coupled, six degree-of-freedom model of @z FBA Hornet. The
control laws were implemented without making any assumgtabout the nonlin-
earity of the six degree-of-freedom aircraft model. Basedhe results presented
in the paper, the following conclusions are drawn. Firsthiqpositive and nega-
tive angular rate commands were seen to be perfectly tramkdide controller and
consistent tracking was guaranteed independent of theedesference trajectory.
Second, throughout the maneuver the controller demoasitigibbal asymptotic
tracking even though the desired reference trajectoryireg|the aircraft to switch
between linear and nonlinear regimes. This robust perfocmaf the controller was
shown to hold for alke < £* = 7.5. Third, all closed-loop signals were bounded and
the control surface deflections computed were smooth arfdnagpecified limits.
Fourth, this technique does not require the knowledge opénurbation parameter
€. This is an important consideration for systems such asadirevhere quantifying
this parameter can be difficult.
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