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Flight testing is the preferred means of obtaining accurate, locally linear, dynamic
models of nonlinear aircraft dynamics. In this paper, decoupled longitudinal and lat-
eral/directional linear dynamic models of an unmanned air vehicle are identified using the
Observer/Kalman Filter Identification method. This method is a time-domain technique
that identifies a discrete input-output mapping from known input and output data samples.
The method is developed for flight testing, including details of instrumentation, measure-
ments, and data post-processing techniques such as nonlinear estimation. Multiple flight
tests were conducted, and experimental examples for longitudinal and lateral/directional
dynamics are presented, including the model selection process. Fidelity of the identified lin-
ear models to the nonlinear plant is validated by comparing measured and model predicted
outputs with measured inputs from flight test. Mean squared errors and the Theil informa-
tion coefficient are used as accuracy metrics. Results presented in the paper demonstrate
that the linear models reproduced from flight test results are acceptable representations of
the nonlinear aircraft dynamics in the cruise configuration.

Nomenclature

α angle-of-attack
β sideslip angle
u body 1-axis perturbed airspeed
p aircraft roll rate
q aircraft pitch rate
r aircraft yaw rate
φ aircraft roll angle
θ aircraft pitch angle
ψ aircraft heading angle
x vector x
T discrete-time sample period
xk value of discrete-time variable x at time Tk

Acronyms
ADC Air Data Computer
APM ArduPilot Mega
ERA Eigensystem Realization Algorithm
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GPS Global Positioning System
IMU Inertial Measurement Unit
MSE Mean squared error
OKID Observer/Kalman Filter Identification
TIC Theil information coefficient
UAV Unmanned aerial vehicle
VSCL Vehicle Systems + Controls Laboratory

I. Introduction

System identification of fixed-wing aircraft from flight data remains a reliable method for obtaining ac-
curate dynamic models. The increasing availability of computational fluid dynamics software improves the
accuracy of models that can be obtained in lieu of flight test results. However, using this software may
be time consuming or expensive, unnecessarily so if there is ready access to the physical vehicle. The in-
creasing prevalence of lightweight UAVs means that the topic of fixed-wing aircraft system identification has
remained a focus for study in recent research. Valasek and Chen1 consider Observer/Kalman Filter Iden-
tification (OKID) for online system identification of UAVs, and present results using nonlinear simulation.
Morelli2 summarizes historical and recent aircraft dynamic identification research at NASA Langley Research
Center. These results include: real-time parameter estimation using a recursive Fourier transform; multi-
variate orthogonal polynomial models for globalizing wind-tunnel test data; frequency-domain approach for
identifying low-order equivalent system models from flight data, applied to high angle-of-attack F-18 flights
and to the Tu-144 supersonic vehicle; and modelling of unsteady aerodynamics using indicial functions. Ref.
3 employs a modified sequential least-squares algorithm for online identification of a time-varying state-space
model for an F/A-18 aircraft. Rohlf4 identifies a global model of the X-31 experimental aircraft by devel-
oping aerodynamic increment tables based on flight tests to supplement an existing database. Ref. 5 uses
Hopfield Neural Networks to develop linear models by minimizing an error function. In Ref. 6, nonlinear
aircraft models are identified using Global-Local Mapping Algorithm, and compares against linear models
identified using OKID. More recently, Dorobantu et. al7 perform frequency domain identification using the
CIFER software package to fit a first-principles linear model.

This paper extends the previous simulation based work of Valasek and Chen1 by using the Observer/Kalman
Filter Identification (OKID) methodology to identify linear dynamic models of a UAV from flight data. While
that work demonstrated that the methodology is suitable for simulation-based identification with simulated
turbulence and sensor noise, the present work addresses identification from flight data acquired with actual
sensors. The paper is organized as follows. Section II introduces the OKID algorithm, and Section III
contains the vehicle description. Section IV details the instrumentation and measurements and Section V
discusses the flight testing. Section VI presents the flight test results and describes the model identification
process and selection of models, and Section VII presents conclusions.

II. Observer/Kalman Filter Identification (OKID)

OKID is developed from the eigensystem realization algorithm (ERA) for linear system identification.8

In this section, the theoretical backgrounds of the ERA and OKID algorithms are presented. In both cases,
linear discrete-time systems for the plant behavior are assumed, and have the following form:

xk+1 = Axk +Buk

yk = Cxk +Duk
(1)

In Eq. (1), the k index in xk is shorthand for x(kT ), where T is the system sample rate and k is an
integer. x ∈ Rn, u ∈ Rm, A ∈ Rnxn, B ∈ Rnxm, C ∈ Rqxn, and D ∈ Rqxm. The generic problem of
system identification is to determine matrices [A,B,C,D] such that a measured output sequence for yk is
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reproduced.

II.A. Eigensystem realization algorithm

The development here follows Refs. 9 and 10. For a discrete-time linear system of the form of Eq. (1) with
zero initial conditions for x(0), the output sequence for the linear dynamic system is as follows:

y0 = Cx0 +Du0 = Du0

x1 = Ax0 +Bu0 = Bu0

y1 = CBu0 +Du1

x2 = Ax1 +Bu1 = ABu0 +Bu1

y2 = C(ABu0 +Bu1) +Du2

. . .

xk+1 =

k∑
i=0

Ak−iBui

yk = C

k−1∑
i=0

(
Ak−i−1Bui

)
+Duk

(2)

Define the system Markov parameters Y (k) by

Y (k) =

{
D : k = 0

CAk−1B : k > 0
(3)

The output sequence can be written as in Eq. (4):

yk =

k∑
i=1

Y (k − i)ui (4)

The ERA assumes measurements of the Markov parameters are available. They may be obtained directly
by measuring the system response to a unit impulse on each of the m input channels, or indirectly as in
OKID. In the former case, the jth column of Y (k) is the system response yk to a unit pulse on input j at
t = 0.

The basic ERA solution procedure for obtaining a realization is as follows:

1. Construct the r × s block Hankel matrix, defined as:

Hk−1 =


Y (k) Y (k + 1) . . . Y (k + s− 1)

Y (k + 1) Y (k + 2) . . . Y (k + s)
...

...
...

Y (k + r − 1) Y (k + r) . . . Y (k + r + s− 2)

 (5)

2. Compute the singular value decomposition (SVD) of H(0), defined as H(0) = RnΣSn.

3. The system order is determined from the relative magnitude of the singular values of H(0). In theory,
the system order is the number of nonzero singular values; in practice, measurement noise and machine
errors will produce small singular values that should be neglected.

4. A minimum-order system realization can be written in terms of the SVD:
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Â = Σ−1/2
n RTnH(1)SnΣ−1/2

n

B̂ = Σ1/2
n STnEr

Ĉ = ETmRnΣ1/2
n

D̂ = Y (0)

(6)

5. Modal damping and frequencies may then be obtained from the realized state matrix

II.B. Observer/Kalman Filter Identification

OKID extends the ERA to systems with nonzero initial conditions and arbitrary input sequences. Funda-
mentally, OKID obtains a close approximation to the Hankel matrix of Eq. 5, then follows the ERA solution
procedure. The development in this section follows Refs. 8 and 1. In addition to the requirement of zero
initial conditions and pulse inputs, the ERA may suffer from long computational times for lightly damped
systems. OKID overcomes this issue by augmenting the discrete-time system of Eq. (1) with an observer G,
as in:

xk+1 = (A+GC)xk + (B +GD)uk −Gyk = Āxk + B̄vk

vk =

[
uk

yk

]
yk = Cxk +Duk

(7)

The problem formulation is otherwise the same; however, the presence of nonzero initial conditions and
arbitrary control inputs modifies the output sequence from Eq. (4):

xk+1 = Ak+1x0 +

k∑
i=0

Ak−iBui

yk = C

(
Akx0 +

k−1∑
i=0

(
Ak−i−1Bui

))
+Duk

(8)

The output sequence can be written compactly as

ȳ = CĀpx̄+ Ȳ V̄

ȳ ≡
[
yp yp+1 . . . yl−1

]
Ȳ ≡

[
D CB̄ CĀB̄ . . . CĀp−1B̄

] (9)

In Eq. (9), the terms D, CB̄, CB̄Ā, etc. are the observer Markov parameters. They are equivalent to
Eq. (3) for the system modified by the observer G. The matrix V̄ is the Hankel matrix composed of the
augmented system inputs:

V̄ =


up up+1 . . . ul−1

vp−1 vp . . . vl−2

vp−2 vp−1 . . . vl−3

. . .
... . . .

...

v0 v1 . . . vl−p−1

 (10)

A key assumption is that Āp becomes negligibly small for some p > 0. Under this assumption, Eq. (9)
can be written as
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ȳ = Ȳ V̄ (11)

Eq. (11) is solved for the unknown Ȳ in a least-squares sense:

Ȳ = ȳV̄ +

V̄ + ≡ V̄ T (V̄ V̄ T )−1
(12)

With the solution for Ȳ , it is straightforward to partition it into the observer Markov parameters:

Ȳ =
[
D CB̄ CĀB̄ . . . CĀp−1B̄

]
≡
[
Ȳ0 Ȳ1 Ȳ2 . . . Ȳp

]
(13)

For k > 0, the observer Markov parameters may be partitioned as:[
Ȳ

(1)
k −Ȳ (2)

k

]
≡
[
C(A+GC)k−1(B +GD) −C(A+GC)k−1G

]
, k = 1, 2, 3, . . . (14)

Note that only the observer Markov parameters have been determined, not the system Markov parameters
as required for the ERA. The system Markov parameters Yj can be shown to be recursively related to the
observer Markov parameters Ȳj :

1

Yj = Ȳ
(1)
j +

j∑
i=1

Ȳ
(2)
i Yj−1, j = 1, . . . , p

Yj =

j∑
i=1

Ȳ
(2)
i Yj−1, j = p+ 1, . . . ,∞

D = Y0 = Ȳ0

(15)

This determines the system Markov parameters. From the Markov parameters, ERA beginning at Eq.
(5), or an equivalent algorithm, is used to realize A,B,C as before.

III. Vehicle description

The Pegasus unmanned aerial vehicle (UAV) was designed and built by the Vehicle Systems & Control
Laboratory (VSCL) at Texas A&M University as a sensor and control testbed. Pegasus is configured as a
high-wing, twin-boom tail aircraft designed for stability for airborne remote sensing applications. Pegasus
is configured with multiple redundant, independently-actuated control effectors including eight ailerons, two
elevators, and two rudders, making this vehicle ideal for experimentally simulating actuator failure or losses
of control effectiveness due to damage. The tail and nose are equipped with ballast mounts, and the wings
and main gear longitudinal locations are adjustable in one inch (6% of chord) increments to allow extreme
flexibility in payload configuration and static longitudinal stability requirements. Pegasus is modular and
can be disassembled and stored in a case measuring roughly 7 x 3 x 2 ft (l x w x h) for ease of transport. The
wings and tail are constructed of fiberglass/epoxy composite over a foam core with a circular carbon fiber
spar. The fuselage is constructed of aluminum and fiberglass/epoxy with foam core. The Pegasus fuselage
is sized to fit a standard ATX motherboard, so there is substantial payload capacity and volume to support
relatively extensive computing hardware, compared to commonly available academic research platforms.

The design gross payload is 20 lbf in the Pegasus Modular Payload Unit, a shock-mounted EIA-310
compatible rack with the following characteristics:

• Up to 6U of 19 inch chassis mounted in face-up or down orientation or

• Up to 10U of 9 inch half-rack chassis mounted in face-up or down orientation or

• Up to 6U of 9 inch half-rack chassis mounted in face-forward or back orientation or
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Figure 1. Pegasus external physical characteristics

• Some combination of the above.

• 12 inch flange-to-flange depth in face-up orientation

• 19.5 inch flange-to-flange depth in face-forward orientation Nose mounts are also available for up to 5
lbf of payload.

Since the first flight in February of 2012, the vehicle has approximately 15 flight hours and more than 70
flights.

IV. Instrumentation and Measurements

The vehicle is equipped with an Ardupilot Mega version 1 (APM1) autopilot. This autopilot records basic
accelerometer, gyroscope, and barometric altitude measurements at 50 Hz. For system identification, this
autopilot is augmented with an Aeroprobe 5-hole probe and ADC that measures airspeed, angle-of-attack,
and sideslip angle. The range of recordable airspeeds is 8 - 45 m/s with a minimum airspeed resolution of
0.25 m/s. The range of values for both angle-of-attack and sideslip angle is ±20◦ with a flow angle resolution
of 0.1◦.11 The ADC is capable of recording these values at 100 Hz either onboard via a microSD card or
through serial communication to the autopilot. A rapid prototyped mount and bracket were designed to fix
the 5-hole probe to the wing tip (Figure 2. Placing the ADC in the wing tip minimized the length of the
tubing between the two components as well as maintained ease of assembly and disassembly of the Pegasus
vehicle. Power wires run through the wing into the fuselage where the flight battery is located. The probe
is fully constrained and mounted perpendicular to the leading edge of the wing as well, parallel to the chord
line (Figure 3).

The APM1 samples the associated pressure transducers at 50 Hz. Additionally, global positioning system
(GPS) inertial position measurements are recorded at 5 Hz.
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Figure 2. Internal installation of 5-hole air data probe and air data computer

Figure 3. Wingtip installation of 5-hole airdata probe
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Parameter Value

Design payload 20 lbf

Design max t/o weight 55 lbf

Design empty dry weight 33 lb

Wing span 12 feet

Wing area 18 ft2

Wing aspect ratio 8

Wing airfoil NASA LS(1)-0413

Tail airfoil NASA LS(1)-0013

Vertical tail area 3 square feet

Vertical tail aspect ratio 1.5

Horizontal tail area 3 square feet

Horizontal tail aspect ratio 3

Design wing loading 3 psf

Design power loading 6.1 lbf/hp

Design max endurance 1 hour

Design stall speed (flaps up) 26 knots

Powerplant 3W 85cc single-cylinder two-stroke reciprocating engine

Fuel capacity 1.9 lb (1.5 L)

Propeller 24 inch 3-blade carbon fiber

Table 1. Pegasus physical characteristics

Measurement Units Sample rate (Hz)

Inertial position
degrees latitude/longitude

meters altitude
5

Three-axis acceleration m/s2 50

Three-axis angular velocity rad/s 50

Barometric altitude meters 50

Three-axis attitude estimates radians 50

Table 2. Measured states, units, and sample rates for Pegasus system identification.

IV.A. Data processing

Angular rates and aerodynamic angles are prefiltered using Butterworth filters in MATLABTM to reduce
measurement noise.12 Initial flight tests in 2013 demonstrate problems with the aerodynamic data acquisition
and autopilot attitude determination. The attitude output from the autopilot appears to approach non-zero
steady-state values after excitation, which is inconsistent with the observed behavior during flight. This
is interpreted as a possible effect of gyroscope bias, or simply poor accuracy in attitude estimation. In
addition, for two of three flight days, performance of the air data probe is inconsistent. Angle-of-attack and
sideslip angle measurements are not usable on these days, and on one of those days airspeed readings are
also unusable. The process used to address these issues is described in this section.

IV.A.1. Attitude estimation

To obtain the Euler angle position history, an extended Kalman filter (EKF) is implemented based on the
method outlined in Ref. 13. This filter is used to process all subsequent data and provide three-axis attitude
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Figure 4. Flowchart of attitude estimation from GPS time histories.
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Figure 5. Comparison of pitch attitude estimates from flight data and from the EKF for one longitudinal-axis maneuver.

and gyro bias estimates. The following procedure is used, and is also summarized in the flowchart of Fig. 4:

1. GPS-derived inertial position histories are differentiated once to estimate inertial velocity in three axes.

2. To reduce noise, a two-term moving average of inertial velocity is taken and used subsequently.

3. In a north-east-down inertial coordinate system, aircraft heading is estimated from ψ = arctan Veast

Vnorth
.

4. Velocity histories are differentiated to produce acceleration histories, and a two-term moving average
is again taken to reduce noise.

5. A value of −gn̂3 is added to the inertial acceleration histories for consistency with accelerometer
measurements, in which n+ is the inertial coordinate system.

6. The inertial acceleration vector is transformed from the inertial frame through a three-axis rotation
through ψ into an intermediate reference labeled i+.

7. The transformed acceleration histories are now related to the aircraft body frame by a 2-axis rotation
through θ and a 1-axis rotation through φ. In theory this vector should match the accelerometer
measurements after rotating through the two still-unknown angles.

8. φ and θ are estimated in a least-squares sense by solving the following linearized transformation equa-
tion relating the intermediate frame i+ to the body frame b+:a1a2

a3


b

=

1 0 −θ
0 1 φ

θ −φ 1


a1a2
a3


i

(16)

9. The resulting φ and θ histories are treated as measurement updates in a continuous-discrete EKF.

Attitude and gyro bias estimation is a familiar estimation problem with many existing solutions. The
EKF attitude estimator in Ref. 14 is modified to use the Euler angles directly instead of the quaternion
to parameterize attitude, simplifying the filter by eliminating the need to enforce quaternion normality. A
sample of the autopilot and EKF estimates is shown in Fig. 5.

IV.A.2. Aerodynamic angle estimation

The air data measurements are not usable from some flight days. The GPS-derived inertial velocity history
and attitude estimates are used to approximate airspeed and aerodynamic angles as necessary. Body-
frame velocity components U, V,W are computed by transforming the inertial frame velocity vector. The
aerodynamic angles, with the assumption that the external wind is small relative to the magnitude of the
aircraft velocity, are given from:
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Figure 6. Pegasus in flight

tanα =
W

U

tanβ =
V

U

(17)

Airspeed measurements are judged to be usable from two of three flight days by comparing them to the
body 1-axis inertial speed, but all of the aerodynamic data were unusable from the final day of testing. Direct
airspeed measurements are found to generally yield better models, and are used whenever available. Since
aerodynamic angles are usable on only one flight day, the approximation from inertial velocities described
above was used on all flights for consistency in comparing model fits on different flight days. The choice of
measured or estimated aerodynamic angles did not appear to significantly affect model accuracy.

V. Flight testing

Initial system identification flight tests of the Pegasus aircraft were conducted under manual control
between September and November 2013. A summary of flights is given in Table 7. Longitudinal-axis
maneuvers consist of an elevator doublet followed by a throttle doublet. Lateral/directional maneuvers
consist of a rudder doublet followed by an aileron doublet. A total of fifteen longitudinal axis trials and
thirty-two lateral/directional axis trials are conducted over three flight days.

VI. Model realization and selection

For model realization, the vehicle is assumed to be trimmed about a steady-state value, and a linear
model is fit to perturbations in the aircraft states. It is assumed that vehicle bank angle φ is zero; this allows
the aircraft linear dynamics to be decoupled into independent longitudinal and lateral/directional axes, each
with two controls. All angular rates are assumed to be constant in the steady state. The longitudinal axis
variables are perturbed airspeed, angle-of-attack, pitch rate, and pitch angle, with elevator and throttle as
controls. For the lateral/directional axis, the perturbed variables are sideslip angle, roll rate, yaw rate, and
roll angle, with aileron and rudder controls.

To identify models from the processed flight data, the data are manually segmented into each longitudinal
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or lateral/directional maneuver. A model is then fitted to each data segment. For validation, control inputs
are fed back into the identified model, starting at the measured initial state, and the measured and predicted
responses are compared.

Models are verified against both the data used in identification and time histories from other segments.
Both mean squared error (MSE) and the Theil inequality coefficient (TIC) are used as metrics of fit. MSE
is defined in terms of the measured output ỹk and predicted output ŷk as in Eq. (18):

MSE =

∑N
k=1(ỹk − ŷk)2

N
(18)

The TIC is defined as follows:

TIC =

√
1/N

∑N
k=1(ỹk − ŷk)2√

1/N
∑N
k=1 ỹ

2
k +

√
1/N

∑N
k=1 ŷ

2
k

(19)

Eq. (19) yields a vector whose members are between 0 and 1, and can be evaluated across one data set or
several. TIC = 0 implies the predictions match the data exactly and TIC = 1 implies maximum inequality.
Acceptable values vary, but a range of 0.25 < TIC < 0.3 is considered to indicate good agreement.15

Models are first downselected by considering MSE, and models with relatively high MSE are removed.
If multiple models with similar qualitative behavior remain, TIC is used to further identify goodness-of-fit.
The identified models for the two axes are given in the appendix.

VI.A. Longitudinal model selection

Models are evaluated by computing the mean squared error in predicting the data in all other segments on
the same day. The models on each day with consistently good performance are further downselected by
comparison against data from other days. Figs. 7-8 plot the base 10 logarithm of the mean squared error
for each model evaluated in this fashion. For each trial and state, the total MSE across all data on a given
flight day is plotted. Smaller values indicate a more accurate fit.

Based on the preceding analysis, three models were evaluated in terms of MSE against data from other
flight days: Models 1 and 3 from day 1 and Model 2 from day 2. Table 3 collects the MSEs for all flight
days when these models are evaluated in this fashion. Based on these results, either Day 1 Trial 3 or Day 2
Trial 2 have good performance that is relatively consistent across data sets.

Model log10(MSEu) log10(MSEα) log10(MSEq) log10(MSEθ)

Day 1 Trial 3 1.237 -1.791 -1.446 -1.364

Day 1 Trial 3 1.625 -2.082 -0.886 -0.938

Day 1 Trial 1 1.909 -1.394 -1.582 -1.305

Day 1 Trial 1 2.338 -0.355 -1.236 -0.887

Day 2 Trial 2 1.899 -0.701 -1.736 -0.838

Day 2 Trial 2 1.126 -1.720 -2.253 -1.834
Table 3. Mean squared errors of the best Pegasus longitudinal models identified using OKID.

To further compare the two models, the Theil inequality coefficient (TIC) is computed. The TIC is
computed for the final two models over a set of five trials that have similar initial conditions. Two trials are
from day 1 and three from day 3. Model accuracy in terms of TIC is quite similar between the two models,
which indicates a certain level of consistency in the identification process. Ultimately, the Day 3 Trial 2
model is preferred because of its good accuracy in replicating u and α.

Comparisons of measured outputs with those predicted by the identified model are shown in Fig. 9 for
two flight maneuvers. The model shows good agreement with predicted airspeed and angle-of-attack relative
to other models, and this is a primary reason for its selection.
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Figure 7. Pegasus longitudinal-axis MSEs for day 1 of Pegasus flights.
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Figure 8. Pegasus longitudinal-axis MSEs for day 2 of Pegasus flights.
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Figure 9. Comparison of longitudinal axis time histories and Pegasus model predicted outputs. Flight data are indicated
by the thick black lines.
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Day 1 Trial 3

Trial TICu TICα TICq TICθ

Day 1 Trial 1 0.8607 0.2410 0.3922 0.4303

Day 1 Trial 3 0.4673 0.2093 0.2906 0.4096

Day 2 Trial 2 0.8514 0.3459 0.3812 0.5575

Day 2 Trial 3 0.9214 0.2766 0.4391 0.7971

Day 2 Trial 4 0.7214 0.3326 0.3618 0.4647

Total 0.7252 0.4445 0.5527 0.7020

Day 2 Trial 2

Trial TICu TICα TICq TICθ

Day 1 Trial 1 0.9103 0.5004 0.2863 0.4010

Day 1 Trial 3 0.4866 0.3521 0.2468 0.1611

Day 2 Trial 2 0.4364 0.2213 0.2975 0.4519

Day 2 Trial 3 0.8749 0.2630 0.2606 0.09451

Day 2 Trial 4 0.6627 0.3706 0.2766 0.5007

Total 0.7482 0.5109 0.3841 0.5359

Table 4. Comparison of Theil inequality coefficient for two Pegasus longitudinal models with best performance in terms
of mean squared error.

Trial TICβ TICp TICr TICφ

Day 1 Trial 2 0.2514 0.0985 0.2415 0.2810

Day 1 Trial 5 0.4720 0.1081 0.3888 0.2144

Day 1 Trial 7 0.4008 0.1332 0.4671 0.2874

Day 1 Trial 10 0.4209 0.1232 0.3814 0.4454

Day 1 Trial 12 0.4869 0.1310 0.3965 0.3308

Day 1 Trial 14 0.4719 0.0837 0.2043 0.4052

Day 2 Trial 2 0.3332 0.1303 0.2752 0.6342

Day 2 Trial 11 0.5627 0.2805 0.4801 0.4012

Day 2 Trial 13 0.5117 0.1942 0.4290 0.3904

Day 2 Trial 15 0.3557 0.1529 0.2733 0.3111

Day 2 Trial 17 0.6151 0.2232 0.5628 0.1623

Table 5. TIC for Pegasus lateral/directional models with steady-state bank angle less than 5◦. Each TIC value is
computed by evaluating the model against the data used to generate it.

VI.B. Lateral/directional model selection

One model is fit to each of the thirty-two lateral/directional trials from two days of flying. In some flight
segments, the pilot gave multiple doublet commands consecutively; each individual doublet is treated as
a trial, and so is the string of consecutive doublets. This means that some data are repeated among the
trials. In selecting the best models, one important consideration is the bank angle at the beginning of the
maneuver. The decoupling of aircraft longitudinal and lateral/directional axis dynamics is only possible for
a steady-state bank angle of zero. Therefore, only trials for which the initial bank angle has magnitude less
than 5◦ are considered. This effectively eliminates twenty-two models. MSE is found not to differ greatly
among the remaining models, so each model is evaluated in terms of the TIC against the data used to
generate the model. These TIC values are tabulated in Table 5.
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Trial TICβ TICp TICr TICφ

Day 1 Trial 2 0.4799 0.1437 0.2646 0.5310

Day 2 Trial 3 0.5168 0.1698 0.3934 0.5124

Day 2 Trial 15 0.6033 0.3323 0.4616 0.8200

Table 6. Total TIC for three candidate Pegasus lateral/directional models evaluated across all the sets of data considered
in Table 5.

Based on Table 5, three models are selected for further evaluation: Day 1 Trial 2, Day 2 Trial 2, and
Day 3 Trial 15. The TIC of these three models is then computed for every test in the set of trials in Table
5. These results are given in Table 6. For brevity, only the total TIC computed across all eleven data sets is
shown for the three candidate models. From these results, it is clear that the model from Day 1 Trial 2 has
the lowest TIC for three of the four states. This model also shows reasonably good model fitting qualitatively
(see Fig. 10), so it is selected as the linear lateral/directional model for the Pegasus system.

Fig. 10 shows a comparison of measured outputs and model-predicted outputs for two lateral/directional
trials. The identified model shows reasonably good tracking of the measured states even when compared
against the longer trials in the data set, indicating good agreement between the measurements and predicted
outputs.

VII. Conclusions

This paper has presented flight test results for experimental identification of an unmanned air vehicle
using the Observer/Kalman Filter Identification methodology. This has included a summary of flight test
dates and procedures, a description of data post-processing to correct for unreliable IMU and aerodynamic
measurements, and the presentation of identified model sample fits. Comparison of model predicted out-
puts and measured outputs for both longitudinal and lateral/directional models indicates good consistency
between the identified model and flight data. Based upon the results presented, it is concluded that the Ob-
server/Kalman Filter Identification method is suitable for the problem of generating accurate linear system
models of nonlinear, rigid-body aircraft dynamics.

In future work, this identified models will be used to synthesize flight control laws. Nonlinear model fits
will also be considered for greater accuracy. Additional flight tests will be conducted with a high-fidelity
inertial measurement unit to improve the current results.
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Appendix A: Identified linear models

Identified continuous-time longitudinal and lateral/directional models are presented for a flight speed of
102.7 feet/second at 400 feet altitude. The longitudinal model is given by Eqs. 20-24.

17

D
ow

nl
oa

de
d 

by
 T

E
X

A
S 

A
 &

 M
 U

N
IV

E
R

SI
T

Y
 o

n 
Ja

nu
ar

y 
19

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

14
81

 



Figure 10. Sample model fitting for selected Pegasus lateral/directional model. Solid lines indicate model predicted
outputs.
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ẋ =


−0.796 −6.86 −3.199 −0.620

0.0266 −0.744 0.169 0.664

−0.0983 2.466 −4.21 −1.64

0.000732 0.181 0.603 −0.392

x +


−30.2 3.2609

−1.70 −0.114

−15.4 0.139

−1.52 −0.0301


[
δe

δt

]
(20)


u

α

q

θ

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

x +


−0.125 −0.431

0.0523 −0.0421

−0.0631 0.0651

0.0409 0.0425


[
δe

δt

]
(21)

U1 = 30.3 m/s (22)

α1 = 0.0 rad (23)

θ1 = 0.0 rad (24)

The identified continuous-time lateral/directional model is given by Eqs. 25 and 26.

ẋ =


−1.56 0.193 −0.948 0.124

−11.2 −4.79 1.12 −2.77

12.2 −2.33 0.0539 0.845

−0.905 0.607 0.0131 −0.2300

x +


−0.116 −0.590

112 −3.30

32.3 14.1

6.79 −0.656


[
δa

δr

]
(25)


β

p

r

φ

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

x +


0.0461 −0.000266

−0.625 −0.0456

−0.384 −0.249

−0.0139 −0.0144


[
δa

δr

]
(26)
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Appendix B: Summary of flight tests

Date Time
Wind

(mean/max)
Objectives

Center

of gravity
Weight (lbf)

Time of

flight (min.sec)

2014/09/14 10:45 CDT 2/7 mph Longitudinal 51 in 93.5 12.50

2014/11/02 18:00 CST 6/13 mph Lateral/directional 49 in 99 8.0

2014/11/03 14:30 CST 4/12 mph Lateral/directional 49 in 99 6.40

2014/11/03 15:00 CST 4/12 mph Longitudinal 49 in 99 9.10

Table 7. Test matrix for Pegasus system identification flight tests. Daily average and high steady wind values, measured at a nearby weather station, are
shown.16 Center of gravity is expressed as the distance along the body 1-axis aft of the vehicle nose.
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