
Nonlinear Adaptive Dynamic Inversion Applied to

a Generic Hypersonic Vehicle

Elizabeth Rollins and John Valasek
Vehicle Systems & Control Laboratory, Texas A&M University

and
Jonathan A. Muse and Michael A. Bolender

U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base

Approved for Public Release; Distribution Unlimited. Case Number
88ABW-2013-3391.

1 / 50



Outline

Introduction

Nonlinear Adaptive Dynamic Inversion Control Architecture

Analysis of the Nonlinear Adaptive Dynamic Inversion Control
Architecture During Inlet Unstarts

Conclusions

Extensions

2 / 50



Outline

Introduction
Motivation
Literature Survey
Research Issues
Objectives

Nonlinear Adaptive Dynamic Inversion Control Architecture

Analysis of the Nonlinear Adaptive Dynamic Inversion Control
Architecture During Inlet Unstarts

Conclusions

Extensions

3 / 50



Motivation

Control of Hypersonic Vehicles

• Wide range of flight conditions

• Highly integrated elastic vehicle

• Uncertainties
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Motivation

Inlet Unstart

• Safety concern in hypersonic flight

• Three main causes of inlet unstarts:

1 A flow to the inlet that is slower than the required operating
Mach number for the engine,

2 An altered flow that no longer passes through the throat of the
engine, and

3 An increase in the back pressure in the engine that causes the
shock wave to move ahead of the throat [1].

• Example - Boeing X-51A Waverider
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Literature Survey

• Use of linearized models of hypersonic vehicles to design
controllers:

- Annaswamy, A. M., Jang, J., and Lavretsky, E. ”Adaptive
Gain-Scheduled Controller in the Presence of Actuator
Anomalies.” 2008. [2]

- Gibson, T. E. and Annaswamy, A. M. ”Adaptive Control of
Hypersonic Vehicles in the Presence of Thrust and Actuator
Uncertainties.” 2008. [3]

- Groves, K. P., et al. ”Reference Command Tracking for a
Linearized Model of an Air-breathing Hypersonic Vehicle.”
2005. [4]

- Bolender, M. A., Staines, J. T., and Dolvin, D. J. ”HIFiRE 6:
An Adaptive Flight Control Experiment.” 2012. [5]
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Literature Survey

• Use of nonlinear models of hypersonic vehicles to design
controllers:

- Johnson, E. N., et al. ”Adaptive Guidance and Control for
Autonomous Hypersonic Vehicles.” 2006. [6]

- Fiorentini, L., et al. ”Nonlinear Robust Adaptive Control of
Flexible Air-breathing Hypersonic Vehicles.” 2009. [7]

- Parker, J. T., et al. ”Approximate Feedback Linearization of
an Air-breathing Hypersonic Vehicle.” 2006. [8]

- Brocanelli, M., et al. ”Robust Control for Unstart Recovery in
Hypersonic Vehicles.” 2012. [9]
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Research Issues

• Control of hypersonic flight vehicles modeled as coupled
nonlinear equations with significant parametric uncertainty in
the aerodynamics

• Preventing inlet unstart due to exceeding limits on states

• Preventing inlet unstart due to control surface failures

• Maintaining reasonable tracking following an inlet unstart
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Objectives

Develop a nonlinear adaptive dynamic inversion control
architecture that:

1 Uses the complete coupled nonlinear dynamic equations for an
inelastic, rigid body model of a hypersonic vehicle

2 Can enforce state constraints to prevent inlet unstarts that
occur because of changes in angle-of-attack (α) and sideslip
angle (β)

3 Is capable of preventing the loss of the vehicle following an
inlet unstart

4 Is easily extensible to fault tolerant control methods
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Scope

Plant: The Generic Hypersonic Vehicle (GHV)

• Academic hypersonic vehicle model created at AFRL.

• Nonlinear, 6-DOF, inelastic, no rotors, CFD aero from
shock-expansion viscous corrected. [10]

• Four control surfaces - Two elevons, two ruddervators.
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Nonlinear Adaptive Dynamic Inversion Control

Architecture for the GHV
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Case 1: Equal Number of Controls and Controlled

Variables

Given a general nonlinear equation of a system in the form

ẋ = f(x) + g(x)u (1)

the dynamic equations for α, β, and µ can be written in the same
form as Equation (1) as
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Case 1: Equal Number of Controls and Controlled

Variables

Suppose that a desired reference model for the system is chosen to
be

ẋm = Axm +Br. (2)

The equation for the error between the reference model and the
actual system is

e = xm − x. (3)
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Case 1: Equal Number of Controls and Controlled

Variables

Taking the time derivative of Equation (3) results in

ė = ẋm − ẋ = ẋm − f(x)− g(x)u. (4)

The control u is chosen to be

u = [g(x)]−1[ẋm − f̂(x) +Ke− ν]. (5)

Substituting Equation (5) into Equation (4) and defining
∆ = f̂(x)− f(x) produces the error dynamics

ė = −Ke+∆+ ν. (6)

15 / 50



Case 1: Equal Number of Controls and Controlled

Variables

Assume that ∆ can be represented in the form ∆ = W Tβ(x; d),
where d is a vector of bounded continuous exogenous inputs.
Choose ν to be ν = −Ŵ Tβ(x; d). Then, Equation (6) can be
written as

ė = −Ke− W̃ Tβ(x; d) (7)

where W̃ = Ŵ −W , which is the weight estimation error.

Finally, the adaptive law to ensure Lyapunov stability is defined as

˙̂
W = ΓW Proj(Ŵ , β(x; d)eT ) (8)

where Proj represents the projection operator [11], which is used
to maintain specified bounds on the weights
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Case 2: Number of Controls > Number of Controlled

Variables

Given a general nonlinear equation of a system in the form

ẋ = f(x) + g(x)Λu (9)

the dynamic equations for p, q, and r can be written in the same
form as

ω̇ = I−1(ω × Iω) + I−1(MT +MA(δ = 0))︸ ︷︷ ︸
f(x)

+ I−1Mδδ︸ ︷︷ ︸
g(x)Λu
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Case 2: Number of Controls > Number of Controlled

Variables

ω̇ = I−1(ω × Iω) + I−1(MT +MA(δ = 0))︸ ︷︷ ︸
f(x)

+ I−1Mδδ︸ ︷︷ ︸
g(x)Λu

where
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Case 2: Number of Controls > Number of Controlled

Variables

Suppose that the desired dynamics of the closed loop system are
given by

ẋm = Axm +Br. (10)

The equation for the error between the reference model and the
actual system is

e = xm − x. (11)
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Case 2: Number of Controls > Number of Controlled

Variables

Taking the time derivative of Equation (11) results in

ė = ẋm − ẋ = ẋm − f(x)− g(x)Λu. (12)

The desired final form for ė is

ė = −Ke− W̃ Tβ(x; d) + g(x)Λ̃u (13)

which is the same as the final form for ė in Case 1, except for the
final term g(x)Λ̃u.
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Case 2: Number of Controls > Number of Controlled

Variables

In order to express ė in the final desired form of Equation (13), the
term g(x)Λ̂u is added and subtracted from Equation (12) to
produce

ė = ẋm − f(x)− g(x)Λ̂u+ g(x)Λ̃u. (14)
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Case 2: Number of Controls > Number of Controlled

Variables

In order to determine a specific control law for the system, a
constrained optimization problem is solved in which the cost
function

J = uTQu (15)

where Q = QT > 0, will be minimized, subject to the constraint
g(x)Λ̂u = `, which must be satisfied at all times. The term ` is
based on the control from Case 1 and is expressed as

` = ẋm − f̂(x) +Ke− ν. (16)
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Case 2: Number of Controls > Number of Controlled

Variables

To derive the control law, first the constraint must be included in
the cost function to form the augmented cost function

J̄ = uTQu+ λT (g(x)Λ̂u− `) (17)

where λ ∈ R
n is a Lagrange multiplier. The first order necessary

conditions for minimizing J̄ are given by

∂J̄

∂λ
= g(x)Λ̂u− ` = 0 (18)

∂J̄

∂u
= 2Qu+ Λ̂T gT (x)λ = 0. (19)
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Case 2: Number of Controls > Number of Controlled

Variables

From the first order necessary conditions, the control law is
determined to be

u = Q−1Λ̂T gT (x)(g(x)Λ̂Q−1Λ̂T gT (x))−1`. (20)

where
` = ẋm − f̂(x) +Ke− ν (21)

Note that for the case where n = m, Equation (20) simplifies to
the control law in Case 1, which is

u = [g(x)]−1[ẋm − f̂(x) +Ke− ν]. (22)
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Case 2: Number of Controls > Number of Controlled

Variables

Continuing with the derivation of ė, let ∆ = f̂(x)− f(x).
Substituting Equation (20) and Equation (16) into Equation (14)
produces the equation

ė = −Ke+∆+ ν + g(x)Λ̃u. (23)

Again, assume that ∆ can be represented in the form
∆ = W Tβ(x; d), and choose ν to be ν = −Ŵ Tβ(x; d), where d is
a vector of bounded continuous exogenous inputs. Then, Equation
(23) can be written as

ė = −Ke− W̃ Tβ(x; d) + g(x)Λ̃u (24)

where W̃ = Ŵ −W , which is the weight estimation error.
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Case 2: Number of Controls > Number of Controlled

Variables

Finally, the adaptive laws to ensure Lyapunov stability are defined
as

˙̂
W = ΓW Proj(Ŵ , β(x; d)eT ) (25)

˙̂
Λ = ΓΛ Proj(Λ̂,−ueT g(x)) (26)

where Proj represents the projection operator, which is used to

maintain specified bounds on Ŵ and Λ̂.
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Simulation Results

Objective: Evaluate tracking of a specified reference trajectory,
6/80K.

Commands to α, β, and µ are given as ramp signals from 0
degrees to a desired angle in a fixed amount of time.

Current simulation includes:

• Velocity PID Controller

• Second-order actuator dynamics with ζ = 0.7 and ωn = 25 Hz

• Time delay of 0.03 s (Note: time delays of 0.04 s can be
tolerated as well)

α, β, µ inversion controller: β(x; d) =
[
c α β µ M

]T
, where

c is a constant bias term.

P, Q, R inversion controller: β(x; d) =
[
c p q r α β M

]T
,

where c is a constant bias term.
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Simulation Results

For α = ±2 deg, β = 0 deg, and µ = 70 deg,

0 5 10 15 20 25 30
−10

0

10

20

30

40

time (s)

an
gu

la
r 

ra
te

 (
de

g/
s)

P, Q, R

 

 p

q

r
p

c

q
c

r
c

0 5 10 15 20 25 30

−2

−1

0

1

2

time (s)

an
gl

e 
(d

eg
)

Angle−of−Attack and Sideslip Angle

 

 α
β
α

c

β
c

0 5 10 15 20 25 30
−20

0

20

40

60

80

time (s)

an
gl

e 
(d

eg
)

Bank Angle

 

 

µ
µ

c

0 5 10 15 20 25 30
−1000

0

1000

2000

3000

4000

5000

6000

7000

time (s)

ve
lo

ci
ty

 (
ft/

s)

U, V, W

 

 

u

v

w

0 5 10 15 20 25 30

5865.3

5865.4

5865.5

5865.6

5865.7

5865.8

5865.9

5866

5866.1

5866.2

time (s)

to
ta

l v
el

oc
ity

 (
ft/

s)

Total Velocity

28 / 50



Simulation Results

For α = ±2 deg, β = 0 deg, and µ = 70 deg,
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Robustness Analysis

Uncertainties in the plant examined in the analysis include the
additive uncertainties ∆Cmα , ∆Cnβ

, and ∆Cm and multiplicative
gains D on the control surface deflections, given in terms of
equations as

Cm = Cmbaseline
+∆Cmαα (27)

Cn = Cnbaseline
+∆Cnβ

β (28)

Cm = Cmbaseline
+∆Cm (29)

Cδ = DCδo . (30)
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Robustness Analysis

Table 1: Additive uncertainty ∆Cmα
over a 30 s period with 0.03 s time

delay.

α (deg) β (deg) µ (deg) max ∆Cmα min ∆Cmα

(deg−1) (deg−1)

5 0 0 0.0005 -0.0013

5 1 20 0.0003 -0.0011

Table 2: Additive uncertainty ∆Cnβ
over a 30 s period with 0.03 s time

delay.

α (deg) β (deg) µ (deg) max ∆Cnβ
min ∆Cnβ

(deg−1) (deg−1)

0 1 0 0.007 -0.003

5 0 20 0.01 -0.004

5 1 20 0.006 -0.003

31 / 50



Robustness Analysis

Table 3: Additive uncertainty ∆Cm over a 30 s period with 0.03 s time
delay.

α (deg) β (deg) µ (deg) max ∆Cm min ∆Cm

5 0 0 0.0005 -0.003

5 1 20 0.0005 -0.002
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Robustness Analysis

Table 4: Multiplicative gains D on control surface deflection terms over a
30 s period with 0.03 s time delay.

α (deg) β (deg) µ (deg) Dδf,r Dδf,l Dδt,r Dδt,l

5 0 0 1 0.14 1 1

5 0 0 1 1 1 0.01

5 0 0 0.15 0.15 1 1

5 0 0 1 1 0.15 0.15

5 0 20 1 0.31 1 1

5 0 20 1 1 1 0.01

5 0 20 0.21 0.21 1 1

5 0 20 1 1 0.30 0.30

5 1 20 1 0.42 1 1

5 1 20 1 1 1 0.05

5 1 20 0.38 0.38 1 1

5 1 20 1 1 0.38 0.38
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Modeling an Inlet Unstart

For this simplified model, an inlet unstart is triggered at a specified
time, and the following changes occur in the GHV plant:

• Instantaneous loss of thrust,

• Slight increase in the coefficient of the axial force (CA),

• Slight decrease in the coefficient of the normal force (CN ),
and

• Inclusion of additive variations in Cmα and Cnβ
through the

equations
Cm = Cmbaseline

+∆Cmαα (31)

Cn = Cnbaseline
+∆Cnβ

β. (32)
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Flight Path Angle Reference Trajectory Generation

To allow the GHV simulation to track a flight path angle trajectory
generated using a nonzero setpoint (NZSP) controller, a method
from Reference [12] was applied in which the equation for ḧ, where
h represents the altitude of the aircraft, is written in the form

ḧ =
[
b0V̇ + b1β̇ + b2α̇

]
+

[
a0 a1 a2

]


p

q

r


 (33)

where
a0 = b4

a1 = b3Cφ + b4SφTθ

a2 = b4CφTθ − b3Sφ

and
b0 = CβCαSθ − SβSφCθ − CβSαCφCθ

b1 = V (−SβCαSθ − CβSφCθ + SβSαCφCθ)

b2 = V (−CβSαSθ − CβCαCφCθ)

b3 = V (CβCαCθ + SβSφSθ + CβSαCφSθ)

b4 = V (−SβCφCθ + CβSαSφCθ) .
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Flight Path Angle Reference Trajectory Generation

The original reference trajectory that is generated for γ using the
NZSP controller can be converted to ḣ using the relation from
aircraft kinematics that ḣ = V Sγ . The ḣ, β, µ inversion controller
replaces the original α, β, µ inversion controller in the GHV
simulation, and now desired trajectories for γ can be tracked.
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Simulation Results

Track flight path angle trajectory during inlet unstart at 10 seconds,
6/80K.
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Simulation Results

For the generated flight path angle trajectory during an inlet unstart at
10 seconds
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Conclusions

• The approach of nonlinear adaptive dynamic inversion control
works well as a candidate control architecture for hypersonic
vehicles because

- the control architecture is able to maintain tracking
performance without excessive control effort while being
robust to

• decreases in control surface effectiveness,
• changes in system parameters, and
• time delays of 0.04 seconds or less, and

- the control architecture can tolerate an inlet unstart and
maintain nominal tracking of a specified flight path angle
trajectory.
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Conclusions

• The nonlinear adaptive dynamic inversion control architecture
can maintain reference trajectory tracking with only a slight
degradation in tracking performance following an inlet unstart.

- Through a robustness analysis on the GHV, it was
determined that the maximum additive variations in
Cmα and Cnβ

that the control architecture could tolerate
were ∆Cmα = 0.001 deg−1 and ∆Cnβ

= −0.001 deg−1.
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Extensions

• Enforcing state constraints with a projection operator, and
including the projection operator in the control laws.

• Combine controllers that can enforce state constraints with
fault-tolerant controllers.

• Development of control logic associated with the inlet unstart
envelope for a hypersonic vehicle to determine the appropriate
course of action to ensure its preservation.

• Development and testing of controllers using an elastic model
of a hypersonic vehicle.
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Questions?
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