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Flight control of hypersonic vehicles is challenging because of the wide range of oper-

ating conditions encountered and certain aspects unique to high speed flight. A particular

safety concern in hypersonic flight is the risk of an inlet unstart, which not only produces

a significant decrease in thrust but also results in a change to the aerodynamics and thus

can lead to the loss of the vehicle. Previous work on control design for hypersonic vehicles

often uses linearized or simplified nonlinear dynamical models of the vehicle, and very little

work has been done on recovering from unstart events. Using a generic hypersonic vehicle

as a control design and simulation model, this paper develops a nonlinear adaptive dynamic

inversion control architecture with a control allocation scheme to track realistic flight path

angle trajectories. A robustness analysis is performed on the initial control architecture de-

sign, which shows that the control architecture is able to handle time delays, perturbations

in stability derivatives, and reduced control surface effectiveness. The control architecture

then is evaluated for its ability to handle inlet unstart. Simulation results presented in the

paper demonstrate that the approach achieves desired tracking performance while being

robust to the particular uncertainties and inlet unstart conditions studied.

I. Introduction

The design of control architectures for hypersonic vehicles is a current area of research in the field of
controls. One particular safety concern in hypersonic flight is the risk of an inlet unstart, which can lead to a
decrease in thrust and the possible loss of the vehicle. There are three main reasons that cause a hypersonic
airbreathing engine to unstart: (1) a flow to the inlet that is slower than the required Mach number for
the engine to operate, (2) an altered flow that no longer passes through the throat of the engine because
of reasons such as exceeding the limits on angle-of-attack (α) and sideslip angle (β), and (3) an increase
in the back pressure in the engine that causes the shock wave to move ahead of the throat [1]. A control
architecture for a hypersonic vehicle must be capable of maintaining the aircraft on a controlled trajectory
in the event of an inlet unstart.

Many of the previous control designs for hypersonic vehicles have involved the use of linearized models
of the aircraft instead of the full nonlinear equations of motion [2], [3], [4], [5]. Annaswamy, et.al. created
adaptive controllers for hypersonic vehicles; however, the controllers are designed based on linearized models
of the aircraft dynamics and require gain-scheduling for their implementation [2],[3]. Groves, et.al. imple-
mented control designs based on linear models of a hypersonic vehicle for setpoint and regulator tracking [4].
Bolender, et.al. designed adaptive control laws for an experimental hypersonic vehicle based on a linearized
model of the longitudinal dynamics of the vehicle [5].

In terms of work with nonlinear models for control design, Johnson, et.al. applied a neural network-based
adaptive control architecture to a model of the X-33 vehicle for the generation of ascent and abort trajectories
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as well as the control of the aircraft [6]. Fiorentini, et.al. [7] and Parker, et.al. [8] both used simplified
nonlinear models of a hypersonic vehicle in their control design that exhibited good tracking performance
but a slow response. While Parker, et.al. designed an approximate feedback linearization controller, the
controller in that paper is not adaptive; however, a case study of their approximate feedback linearization
controller showed that the controller was robust to mild plant parameter variations in the moment of inertia
Iyy, the vehicle length, and the mass of the vehicle [9].

This paper presents a design of a nonlinear adaptive dynamic inversion controller for a Generic Hypersonic
Vehicle (GHV). Because the dynamic equations for the GHV are inherently nonlinear and the aerodynamic
and control derivatives for the aircraft have significant uncertainty associated with them, a nonlinear adaptive
dynamic inversion control architecture was selected as the preferred control architecture. The design of the
control architecture for the GHV involved the nonlinear equations of motion for the vehicle. When the
reference trajectories were generated for the simulation, the adaptive dynamic inversion control architecture
was altered to use altitude rate ḣ instead of α, but the control architecture still used the nonlinear equation
for ḣ in its design.

The paper is organized as follows. Section II provides a brief overview of the GHV and the proposed
control architecture. Section III contains the derivations of the general adaptive dynamic inversion equations
that are used in the control architecture. Sections IV and V show how the nonlinear dynamic equations
for the GHV are transformed into the form given in Section III for the control architecture. Representative
simulation results and a robustness analysis of the nonlinear adaptive dynamic inversion control architecture
are given in Section VI. Section VII describes the development of equations to allow realistic trajectories to
be generated for the GHV simulation, and the simulation results for these realistic trajectories are shown in
Section VIII. Finally, the conclusion and future extensions of this work are given in Section IX.

II. Control Structure for the GHV

The Generic Hypersonic Vehicle (GHV), as shown in Figure 1, is an academic hypersonic aircraft vehicle
model created at the Air Force Research Laboratory as a platform for studying control laws. The GHV plant
simulation is implemented using a Simulink model that contains the nonlinear, 6-DOF equations of motion
for an inelastic hypersonic vehicle. The aerodynamic and thrust forces and moments acting on the vehicle
are modeled using look-up tables; the tables for the aerodynamic forces and moments were generated based
on computational fluid dynamics data using shock-expansion methods with a viscous correction.

Using two elevons and two ruddervators, it is desired to control angle-of-attack (α), sideslip angle (β),
and aerodynamic bank angle (µ). It was decided to command the aerodynamic bank angle (µ) instead of
the bank attitude angle (φ) in order to ensure that the dynamic inversion is singular only at β = ±90 deg.
Figure 2 shows a diagram of the GHV system with the adaptive dynamic inversion controllers. To simplify
the process of designing a nonlinear adaptive dynamic inversion control architecture, it is assumed that the
aircraft states can be divided into two timescale categories, which are the fast states, which consist of the
angular rates p, q, and r as noted in [10], and the slow states, which consist of the angles α, β, and µ. An
adaptive dynamic inversion controller first must translate α, β, and µ commands into commands for the
body axis rates p, q, and r, which then are passed into another adaptive dynamic inversion controller that
determines the corresponding control surface deflections to achieve the desired p, q, and r commands.

The following three sections will describe the equations found in the inversion blocks in Figure 2. See
Reference [11] for a description of the equations that are contained in the GHV simulation. For the equations
derived in Sections IV and V, the flat, nonrotating earth assumption [12, p. 43] is made. It is acceptable
to make this assumption in this case because while the vehicle is flying fast enough for the round rotating
Earth effects to be significant, the time scale of the controlled dynamics are sufficiently fast to neglect them.

III. General Adaptive Dynamic Inversion Equations

This section contains the derivation of the control laws for two cases of the adaptive nonlinear dynamic
inversion controller. The first case involves dynamic equations containing the same number of controls and
controlled variables, and the second case deals with dynamic equations with a greater number of controls
than controlled variables. It should be noted in both cases, the general nonlinear equation of the system is
assumed to be affine in the control, which is reasonable for small deflection angles.
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Figure 1. The Generic Hypersonic Vehicle (GHV).

Figure 2. Diagram of the nonlinear adaptive dynamic inversion control architecture for the GHV.
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A. Case with Equal Number of Controls and Controlled Variables

Consider a general nonlinear equation of a system in the form

ẋ = f(x) + g(x)u (1)

where x ∈ R
n is the state, u ∈ R

n is the control, and f(x) : R
n 7→ R

n and g(x) : R
n 7→ R

n are locally
Lipschitz continuous. It is assumed that g(x) is nonsingular for all x ∈ R

n. Suppose that the desired
reference dynamics for the system are given by

ẋm = Axm +Br (2)

where xm ∈ R
n is the model state, r ∈ R

n is a bounded reference signal, A ∈ R
n×n is Hurwitz, and

B ∈ R
n×n. The equation for the error between the reference model and the actual system is

e = xm − x. (3)

Taking the time derivative of equation (3) results in

ė = ẋm − ẋ = ẋm − f(x) − g(x)u. (4)

If the control u is chosen to be
u = [g(x)]−1[ẋm − f̂(x) +Ke− ν] (5)

where f̂(x) : R
n 7→ R

n is a model of the plant dynamics, K ∈ R
n×n such that K = KT > 0 are the gains on

the tracking errors, and ν ∈ R
n is a pseudo-control signal, then substituting equation (5) into equation (4)

produces the error dynamics
ė = −f(x) + f̂(x) −Ke+ ν. (6)

Defining the error between the model and the actual system as ∆ = f̂(x) − f(x), equation (6) becomes

ė = −Ke+ ∆ + ν. (7)

In this paper, it is assumed that ∆ can be represented in the form ∆ = WTβ(x; d), where W ∈ R
p×n is a set

of unknown weights, and β ∈ R
p×1 is a set of known basis functions composed of the states x and a vector d

of bounded continuous exogenous inputs. Using this representation for ∆, ν is chosen to be ν = −ŴTβ(x; d),

where Ŵ ∈ R
p×n is an estimate of the weights. With these definitions, equation (7) can be written as

ė = −Ke− W̃Tβ(x; d) (8)

where W̃ = Ŵ −W is the weight estimation error.
The stability of the closed loop system under these assumptions can be established using a candidate

Lyapunov function of the form
V = eT e+ tr(W̃T ΓW

−1W̃ ) (9)

where ΓW ∈ R
p×p with ΓW = ΓW

T > 0. In order to determine the adaptation law for the parameters in W
and to prove that the error between the states of the actual system and the reference model will converge,
first, the derivative of equation (9) along the system trajectories is taken, which gives the result

V̇ = 2eT ė+ 2tr(W̃T ΓW
−1 ˙̂
W

T

). (10)

Substituting equation (8) into equation (10) produces

V̇ = −2eTKe− 2eT W̃Tβ(x; d) + 2tr(W̃T ΓW
−1 ˙̂
W

T

). (11)

Applying the trace identity that aT b = tr(baT ), equation (11) is determined to be

V̇ = −2eTKe+ 2tr(W̃T (ΓW
−1 ˙̂
W

T

− β(x; d)eT )). (12)
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Then, by choosing
˙̂
W as

˙̂
W = ΓWProj(Ŵ , β(x; d)eT ) (13)

where Proj represents the projection operator, which is used to maintain specified bounds on the weights
[13], V̇ can be upper bounded as

V̇ ≤ −2eTKe ≤ 0 (14)

which implies that e is bounded. Because r is bounded by definition above, xm is bounded. Since e and xm

are bounded, x is bounded. Consequently, β(x; d) is bounded as well. In order to use Barbalat’s lemma [14]
to complete the proof, the second derivative of equation (9) along the system trajectories is taken, which
gives the result

V̈ = −4eTKė. (15)

Substituting equation (8) into equation (15) produces

V̈ = −4eTK(−Ke− W̃Tβ(x; d)). (16)

Because e, W̃ , and β(x; d) are bounded as proved above, V̈ is bounded, and therefore V̇ is uniformly
continuous.

Because V is lower bounded, V̇ is negative semi-definite, and V̇ is uniformly continuous, by Barbalat’s
lemma V̇ → 0 as t→ ∞, and thus e→ 0 as t→ ∞ as desired.

B. Case with a Greater Number of Controls Than Controlled Variables

Specifically for the GHV, the form of the general adaptive dynamic inversion controller in the previous
subsection applies to the α, β, and µ inversion component, in which the number of inputs to the system (α,
β, µ) is equal to the number of outputs (p, q, r). However, in the p, q, r inversion component, the number of
inputs to the system (p, q, r) is not the same as the number of outputs (δf,r, δf,l, δt,r, δt,l). The fact that the
number of outputs is greater than the number of inputs requires a control allocation scheme to be integrated
into the inversion control law. To frame the problem in general terms, consider the given nonlinear equation
of a system in the form

ẋ = f(x) + g(x)Λu (17)

where x ∈ R
n is the state, u ∈ R

m is the control, f(x) : R
n 7→ R

n and g(x) : R
n 7→ R

n×m are locally
Lipschitz continuous, and Λ ∈ R

m×m is a constant unknown positive definite matrix. It is assumed that
g(x) is full rank for all x ∈ R

n. Suppose that the desired dynamics of the closed loop system are given by

ẋm = Axm +Br (18)

where xm ∈ R
n is the model state, r ∈ R

m is the bounded reference signal, A ∈ R
n×n is Hurwitz, and

B ∈ R
n×m.

The derivation of the control law and the adaptive laws, including one for the unknown control effective-
ness matrix Λ, proceeds similarly to the derivation in Subsection A. The equation for the error between the
reference model and the actual system is

e = xm − x. (19)

Taking the time derivative of equation (19) results in

ė = ẋm − ẋ = ẋm − f(x) − g(x)Λu. (20)

The desired final form for ė is
ė = −Ke− W̃Tβ(x; d) + g(x)Λ̃u (21)

which is the same as the final form for ė in Subsection A, except for the final term g(x)Λ̃u. With the

appropriate choice of adaptive law for Λ̂, the choice of the above final form for ė will allow the stability
of the system to be proven. In order to derive this desired form of ė, first the term g(x)Λ̂u is added and

subtracted from equation (20), where Λ̂ ∈ R
m×m is an estimate of the control effectiveness matrix, and the

error equation becomes
ė = ẋm − f(x) − g(x)Λu+ g(x)Λ̂u− g(x)Λ̂u. (22)
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Let Λ̃ = Λ̂ − Λ, which is the estimation error of the control effectiveness matrix. Then, equation (22)
simplifies to

ė = ẋm − f(x) − g(x)Λ̂u+ g(x)Λ̃u. (23)

Because of the fact that the number of controls is greater than the number of controlled variables in
this case, there sometimes are infinite choices for u at any instant in time. In order to determine a specific
control law for the system, a constrained optimization problem is solved in which the cost function J = uTQu,
where Q ∈ R

m×m with Q = QT > 0, will be minimized, subject to the constraint g(x)Λ̂u = ℓ, which must
be satisfied at all times. The cost function is chosen to be J = uTQu so that the control effort will be
minimized, which consequently can be used to reduce the amount of trim drag during flight. it is assumed
by this formulation of the problem that the control surfaces do not have position limits, and as a result,
sufficient control power will always exist. By choosing the term ℓ in the constraint equation to be

ℓ = ẋm − f̂(x) +Ke− ν (24)

where f̂(x) : R
n 7→ R

n is an estimate of the plant dynamics, K ∈ R
n×n with K = KT > 0 contains the

gains on the errors, and ν ∈ R
n is a pseudo-control signal, the constraint g(x)Λ̂u = ℓ will ensure that when

the derived control law for this second case is substituted into the equation for ė, and the equation for the
error dynamics is simplified, the first two terms of equation (21) will appear in the resulting equation for ė as
desired. For simplicity in the control law derivation, equation (24) will not be substituted into the constraint
equation at the present time.

To derive the control law, first the constraint must be included in the cost function to form the augmented
cost function

J̄ = uTQu+ λT (g(x)Λ̂u− ℓ) (25)

where λ ∈ R
n is a Lagrange multiplier. The necessary conditions for minimizing J̄ are given by

∂J̄

∂λ
= g(x)Λ̂u− ℓ = 0 (26)

∂J̄

∂u
= 2Qu+ Λ̂T gT (x)λ = 0. (27)

Rearranging terms in equation (27) results in

u = −
1

2
Q−1Λ̂T gT (x)λ. (28)

Substituting equation (28) into equation (26) and solving for λ produces the equation

λ = −2(g(x)Λ̂Q−1Λ̂T gT (x))−1ℓ. (29)

Finally, substituting equation (29) back into equation (28) results in the control law

u = Q−1Λ̂T gT (x)(g(x)Λ̂Q−1Λ̂T gT (x))−1ℓ. (30)

In order for the control law given in equation (30) to be continuous, Q and g(x)Λ̂Q−1Λ̂T gT (x) must be

invertible. The projection bounds that will be applied in the adaptive law for Λ must ensure that Λ̂ remains
invertible. It should be noted that for the case where the number of controls equals the number of controlled
variables, the control solution is unique, and the control law in equation (30) simplifies to

u = [g(x)]−1[ẋm − f̂(x) +Ke− ν] (31)

which is the control law that was chosen in Subsection A.
Continuing with the derivation of ė, let ∆ = f̂(x)− f(x). Substituting equation (30), equation (24), and

into equation (23) produces the equation

ė = −Ke+ ∆ + ν + g(x)Λ̃u. (32)

Again, assume that ∆ can be represented in the form ∆ = WTβ(x; d), where W ∈ R
p×n is a set of

unknown weights, and β ∈ R
p×1 is a set of known basis functions composed of the states x and a vector d
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of bounded continuous exogenous inputs. Also, the representation for ν is chosen to be ν = −ŴTβ(x; d),

where Ŵ ∈ R
p×n. Then, equation (32) can be written as

ė = −Ke− W̃Tβ(x; d) + g(x)Λ̃u (33)

where W̃ = Ŵ −W , which is the weight estimation error.
As in Subsection A, a Lyapunov analysis needs to be performed in order to determine the adaptive laws

for Λ̂ and Ŵ and to prove that the error between the states of the actual system and the reference model
will converge. Given the candidate Lyapunov function

V = eT e+ tr(W̃T ΓW
−1W̃ ) + tr(Λ̃ΓΛ

−1Λ̃) (34)

where ΓW ∈ R
p×p with ΓW = ΓW

T > 0, and ΓΛ ∈ R
m×m with ΓΛ = ΓΛ

T > 0, the derivative of equation
(34) along the system trajectories is taken, which results in the equation

V̇ = 2eT ė+ 2tr(W̃T ΓW
−1 ˙̂
W

T

) + 2tr(Λ̃ΓΛ
−1 ˙̂

Λ
T

). (35)

Substituting equation (33) into equation (35) produces

V̇ = −2eTKe− 2eT W̃Tβ(x; d) + 2eT g(x)Λ̃ + 2tr(W̃T ΓW
−1 ˙̂
W

T

) + 2tr(Λ̃ΓΛ
−1 ˙̂

Λ
T

) (36)

and by applying the trace identity that aT b = tr(baT ) to equation (36), the equation for V̇ becomes

V̇ = −2eTKe+ 2tr(W̃T (ΓW
−1 ˙̂
W

T

− β(x; d)eT )) + 2tr(Λ̃(ΓΛ
−1 ˙̂

Λ
T

+ ueT g(x))). (37)

Let the equation for
˙̂
W in this case be the same as equation (13), and let

˙̂
Λ be

˙̂
Λ = ΓΛProj(Λ̂,−ue

Tg(x)). (38)

In this case, the final equation for V̇ is is upper bounded by

V̇ ≤ −2eTKe ≤ 0 (39)

which implies that e is bounded. Since r is bounded by definition above and e is bounded, xm is bounded,
and thus x is bounded. Consequently, g(x) and β(x; d) are bounded as well. In order to use Barbalat’s
lemma to complete the proof, the second derivative of equation (34) along the system trajectories is taken,
which gives the result

V̈ = −4eTKė. (40)

Substituting equation (33) into equation (40) produces

V̈ = −4eTK(−Ke− W̃Tβ(x; d) + g(x)Λ̃u). (41)

It should be noted that u is bounded because all of the the signals found in u, which is given by equations
(30) and (24) are bounded. Thus, because e, W̃ , β(x; d), g(x), Λ̃, and u are bounded as proved above, V̈ is
bounded, and therefore V̇ is uniformly continuous.

Finally, Barbalat’s lemma can be applied. Because V is lower bounded, V̇ is negative semi-definite, and
V̇ is uniformly continuous, by Barbalat’s lemma V̇ → 0 as t→ ∞, and thus e→ 0 as t→ ∞ as desired.

IV. P, Q, R Inversion Controller

The first designed controller was the inversion controller for the angular body rates of the GHV since
these variables are linked directly to the control surface deflections, which control the vehicle. The reference
inputs to the controller are the commanded angular body rates pc, qc and rc, and the output states of the
controller are the control surface deflections δf,r, δf,l, δt,r, and δt,l. Therefore, in this case, equation (17)
represents the current system. In order for the adaptive dynamic inversion controller to be designed for the
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angular body rates, f(x) and g(x) must be determined from the general nonlinear equations for ṗ, q̇, and ṙ,
which in vector-matrix form, are

[J ]
dωB,I

dt

∣∣∣∣
B

+ ωB,I × JωB,I = Maero +MT (42)

where

[J ] =



Jx 0 −Jxz

0 Jy 0

−Jxz 0 Jz


 (43)

and

ωB,I =



p

q

r


 . (44)

Substituting these equations into equation (42) and simplifying produces the result



Jx 0 −Jxz

0 Jy 0

−Jxz 0 Jz






ṗ

q̇

ṙ


 +




−Jxzpq + (Jz − Jy)qr

(Jx − Jz)pr + Jxz(p
2 − r2)

Jxzqr + (Jy − Jx)pq


 = Maero +MT . (45)

Therefore, the nonlinear equations for the angular body accelerations can be written as



ṗ

q̇

ṙ


 =



Jx 0 −Jxz

0 Jy 0

−Jxz 0 Jz




−1 
−




−Jxzpq + (Jz − Jy)qr

(Jx − Jz)pr + Jxz(p
2 − r2)

Jxzqr + (Jy − Jx)pq


 +Maero +MT


 . (46)

After having determined the nonlinear equations for the angular body accelerations, the next step is to
write those equations in the form of equation (17). In order to accomplish this task, the terms related to the
control surfaces, which will form g(x), must be extracted from equation (46). The control surfaces terms are
included in the aerodynamic moment terms MA, which are modeled as

Maero =



LA

MA

NA


 =



q̄SbCℓ

q̄Sc̄Cm

q̄SbCn


 (47)

where

Cℓ = Cℓ,baseline + ∆Cℓ,surfaces +
b

2VT

(
Cℓp

p
)

Cm = Cm,baseline + ∆Cm,surfaces +
c̄

2VT

(
Cmq

q + Cmα̇
α̇
)

Cn = Cn,baseline + ∆Cn,surfaces +
b

2VT
(Cnr

r)

(48)

and
∆Ci,surfaces = ∆Ci,δf,r

(M,α, β, δf,r) + ∆Ci,δf,l
(M,α, β, δf,l)

+ ∆Ci,δt,r
(M,α, β, δt,r) + ∆Ci,δt,l

(M,α, β, δt,l)
(49)

for i = ℓ, m, n.
As seen in equation (48), the moment coefficients are comprised of three parts. The baseline term is

the moment coefficient for the base airframe, while the second and third terms adjust for the effects on
the moment coefficients due to the control surfaces and damping, respectively. In equation (48), the first
and third terms do not depend on the control surfaces; therefore, those two terms belong to the f(x) term
in equation (17). In order to determine g(x), the second term in each equation in equation (48) must be
examined to determine what portion of the term is control-dependent and thus belongs in g(x). For this
particular control design for the GHV, it is assumed that a linear approximation with respect to the control
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surface deflection δ can be made for each of the terms in equation (49). The linear approximation can be
expressed as

∆Ci,δs
(M,α, β, δs) = Ci,δs

(M,α, β, [δs = 0]) +
∂Ci,δs

∂δs

∣∣∣∣
M,α,β constant

∆δs

for i = N,Y,A, ℓ,m, n

and δs = δf,r, δf,l, δt,r, δt,l.

(50)

In this paper, it is assumed that all interactions between each control surface are negligible, which at
high Mach numbers is approximately true. Deflections of the right and left control surfaces will generate
summative forces and moments in the XZ-plane of symmetry of the aircraft, whereas in the other planes,
the deflections will generate canceling forces and moments. In equation form, for both the flaps and the tail
control surfaces, the relationships between right and left elevon deflections are expressed as

CN,δf,r
= CN,δf,l

−CY,δf,r
= CY,δf,l

CA,δf,r
= CA,δf,l

−Cℓ,δf,r
= Cℓ,δf,l

Cm,δf,r
= Cm,δf,l

−Cn,δf,r
= Cn,δf,l

(51)

and the relationships between right and left rudder deflections are expressed similarly as

CN,δt,r
= CN,δt,l

−CY,δt,r
= CY,δt,l

CA,δt,r
= CA,δt,l

−Cℓ,δt,r
= Cℓ,δt,l

Cm,δt,r
= Cm,δt,l

−Cn,δt,r
= Cn,δt,l

.

(52)

Consequently, in equation (50), the term where δs = 0 can be written for the combined effect of both the
right and left control surfaces collectively as

Ci,δf
(M,α, β, [δf,r = 0, δf,l = 0]) =





2Ci,δf,r
(M,α, β, [δf,r = 0]) for i = N,A,m

0 for i = Y, ℓ, n
(53)

Ci,δt
(M,α, β, [δt,r = 0, δt,l = 0]) =





2Ci,δt,r
(M,α, β, [δt,r = 0]) for i = N,A,m

0 for i = Y, ℓ, n.
(54)

Given equations (50), (53), and (54), equation (49) can be rewritten for i = ℓ,m, n as

∆Cℓ =
∂Cℓ,δf,r

∂δf,r

∣∣∣∣
M,α,β constant

∆δf,r +
∂Cℓ,δf,l

∂δf,l

∣∣∣∣
M,α,β constant

∆δf,l

+
∂Cℓ,δt,r

∂δt,r

∣∣∣∣
M,α,β constant

∆δt,r +
∂Cℓ,δt,l

∂δt,l

∣∣∣∣
M,α,β constant

∆δt,l

(55)

∆Cm = 2Cm,δf,r
(M,α, β, [δf,r = 0]) + 2Cm,δt,r

(M,α, β, [δt,r = 0])

+
∂Cm,δf,r

∂δf,r

∣∣∣∣
M,α,β constant

∆δf,r +
∂Cm,δf,l

∂δf,l

∣∣∣∣
M,α,β constant

∆δf,l

+
∂Cm,δt,r

∂δt,r

∣∣∣∣
M,α,β constant

∆δt,r +
∂Cm,δt,l

∂δt,l

∣∣∣∣
M,α,β constant

∆δt,l

(56)

∆Cn =
∂Cn,δf,r

∂δf,r

∣∣∣∣
M,α,β constant

∆δf,r +
∂Cn,δf,l

∂δf,l

∣∣∣∣
M,α,β constant

∆δf,l

+
∂Cn,δt,r

∂δt,r

∣∣∣∣
M,α,β constant

∆δt,r +
∂Cn,δt,l

∂δt,l

∣∣∣∣
M,α,β constant

∆δt,l.

(57)

Since the first two terms of equation (56) are for fixed values of δs, they constitute bias terms and therefore

belong in the f(x) portion of equation (17). As a result, only the terms represented by
∂Ci,δs

∂δs

∣∣∣∣
M,α,β constant

in equations (55), (56), and (57) belong in the g(x) term in equation (17).

9

D
ow

nl
oa

de
d 

by
 J

oh
n 

V
al

as
ek

 o
n 

O
ct

ob
er

 1
5,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

52
34

 

 Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 



To complete the analysis of the terms in equation (46), the effect of the center of gravity shift must be
accounted for in the nonlinear equations for the angular body accelerations. The shift of a set of moments
from a given reference point to the center of gravity is given by the equation

Mcg = Maero − rcg/aero × Faero (58)

and in this particular simulation, rcg/aero is defined to be
[
xcg 0 0

]T

. In the simulation, Faero is calculated

similarly to Maero in equation (47) above, which means that Faero has the form

Faero =



XA

YA

ZA


 =



−q̄SCA

q̄SCY

−q̄SCN


 . (59)

Therefore, given equation (59) and the definition of rcg/aero, equation (58) can be written as

Mcg = Maero −



xcg

0

0


 ×



−q̄SCA

q̄SCY

−q̄SCN


 (60)

Mcg = Maero −




0

−q̄SCNxcg

−q̄SCY xcg


 (61)

where Maero is defined in equation (47). It should be noted that the terms CN and CY in equation (61) can
be written like the moment coefficients in equations (55), (56), and (57) as

∆CN = 2CN,δf,r
(M,α, β, [δf,r = 0]) + 2CN,δt,r

(M,α, β, [δt,r = 0])

+
∂CN,δf,r

∂δf,r

∣∣∣∣
M,α,β constant

∆δf,r +
∂CN,δf,l

∂δf,l

∣∣∣∣
M,α,β constant

∆δf,l

+
∂CN,δt,r

∂δt,r

∣∣∣∣
M,α,β constant

∆δt,r +
∂CN,δt,l

∂δt,l

∣∣∣∣
M,α,β constant

∆δt,l

(62)

∆CY =
∂CY,δf,r

∂δf,r

∣∣∣∣
M,α,β constant

∆δf,r +
∂CY,δf,l

∂δf,l

∣∣∣∣
M,α,β constant

∆δf,l

+
∂CY,δt,r

∂δt,r

∣∣∣∣
M,α,β constant

∆δt,r +
∂CY,δt,l

∂δt,l

∣∣∣∣
M,α,β constant

∆δt,l

(63)

Similarly to the moment coefficients as shown above, since the first two terms of equation (62) are for fixed
values of δs, they constitute bias terms and therefore belong in the f(x) portion of equation (17). As a result,

only the terms represented by
∂Ci,δs

∂δs

∣∣∣∣
M,α,β constant

in equations (62) and (63) belong in the g(x) term in

equation (17).
Having examined all of the terms in the nonlinear equations for the angular body accelerations, equation

(46) can be written in the final form of equation (17) as



ṗ

q̇

ṙ


 =



Jx 0 −Jxz

0 Jy 0

−Jxz 0 Jz




−1


−




−Jxzpq + (Jz − Jy)qr

(Jx − Jz)pr + Jxz(p
2 − r2)

Jxzqr + (Jy − Jx)pq


 +MT + q̄SG+ q̄SH




δf,r

δf,l

δt,r

δt,l





 (64)
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where

G =




b

(
Cℓ,baseline + b

2VT
(Cℓp

p)

)

c̄

(
Cm,baseline +

c̄

2VT
(Cmq

q + Cmα̇
α̇) + 2Cm,δf,r

(δf,r = 0) + 2Cm,δt,r
(δt,r = 0)

)

− 2CN,δf,r
(δf,r = 0)xcg − 2CN,δt,r

(δt,r = 0)xcg

b

(
Cr,baseline + b

2VT
(Cnr

r)

)




(65)

and

H =




b ∂Cℓ

∂δf,r
b ∂Cℓ

∂δf,l
b ∂Cℓ

∂δt,r
b ∂Cℓ

∂δt,l(
c̄ ∂Cm

∂δf,r
− xcg

∂CN

∂δf,r

) (
c̄ ∂Cm

∂δf,l
− xcg

∂CN

∂δf,l

) (
c̄ ∂Cm

∂δt,r
− xcg

∂CN

∂δt,r

) (
c̄∂Cm

∂δt,l
− xcg

∂CN

∂δt,l

)
(
b ∂Cn

∂δf,r
− xcg

∂CY

∂δf,r

) (
b ∂Cn

∂δf,l
− xcg

∂CY

∂δf,l

) (
b ∂Cn

∂δt,r
− xcg

∂CY

∂δt,r

) (
b ∂Cn

∂δt,l
− xcg

∂CY

∂δt,l

)


 . (66)

It should be noted that the partial derivatives in equation (64) are taken with respect to a constant value
of M , α, and β from the current flight condition and that the control surface bias terms, where δs = 0, are
evaluated at a constant value of M , α and β from the current flight condition as well.

Given equation (64), which is now in the form of equation (17), the adaptive dynamic inversion controller
can be constructed using equations (13), (24), (30), and (38).

V. α, β, µ Inversion Controller

As with the p, q, r inversion controller, equations for α̇, β̇, and µ̇ must be determined in order for the
adaptive dynamic inversion controller to be constructed. It should be noted that for this section, Sx will
represent sin(x), Cx will represent cos(x), and Tx will represent tan(x), where x is an angle. The derivations
for α̇ and β̇ are based on the derivations for those terms on pages 110-112 in Reference [15]. The starting
point of the derivations is the basic force equations in the stability axes under the flat Earth assumption,
which are

bv̇rel = (1/m)FA,T + g − ωb/e × vrel. (67)

Taking the time derivative of the relative velocity in the wind axes instead of in the body axes and converting
the right hand side of equation (67) to the wind axes produces the result

mV̇T = FTCα+αT
Cβ −D −mgSγ (68)

mβ̇VT = −FTCα+αT
Sβ − C +mg(CαSβSθ + CβSφCθ − SαSβCφCθ) −mVT (pSα − rCα) (69)

mα̇VTCβ = −FTSα+αT
− L+mg(SαSθ + CαCφCθ) +mVT (−pSβCα + qCβ − rSβSα) (70)

where D, L, and C represent drag, lift, and cross-wind force, respectively, in the wind axes.
In order to simplify equations (69) and (70) and to express them in terms of µ, which is one of the

commanded states, the gravity terms in those equations are transformed using relationships given by the
following direction cosine matrices from Chapter 4 of Reference [12] as

TW,H(µ, γ, χ) = T T
B,W (0,−α, β)TB,H(φ, θ, ψ) (71)

where W represents the wind axes, B represents the body axes, and H represents the local horizon axes.
Each direction cosine matrix has the general form

T2,1(θx, θy, θz) =




Cθy
Cθz

Cθy
Sθz

−Sθy

Sθx
Sθy

Cθz
− Cθx

Sθz
Sθx

Sθy
Sθz

+ Cθx
Cθz

Sθx
Cθy

Cθx
Sθy

Cθz
+ Sθx

Sθz
Cθx

Sθy
Sθz

− Sθx
Cθz

Cθx
Cθy


 . (72)

as shown on page 9 of Reference [16]. By examining the elements of the matrices in equation (71), the
following relationships involving µ and γ were determined to be

TW,H(2, 3) = SµCγ = CαSβSθ + CβSφCθ − SαSβCφCθ (73)
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TW,H(3, 3) = CµCγ = SαSθ + CαCφCθ (74)

which can be substituted into equations (69) and (70) in the gravity terms.
Additionally, the thrust force FT terms are converted into the wind frame and expressed in terms of the

vector
[
FTx

FTy
FTz

]T

, which is given in the body frame. The transformation of the FT terms results in



FTCα+αT

Cβ

−FTCα+αT
Sβ

−FTSα+αT


 =



CαCβ Sβ SαCβ

−CαSβ Cβ −SαSβ

−Sα 0 Cα






FTx

FTy

FTz




=



FTx

CαCβ + FTy
Sβ + FTz

SαCβ

−FTx
CαSβ + FTy

Cβ − FTz
SαSβ

−FTx
Sα + FTz

Cα


 .

(75)

Finally, the forces D, C, and L must be written in terms of the corresponding forces in the stability axes,
which can be calculated directly from information in the model, as



D

C

L


 =



Cβ Sβ 0

−Sβ Cβ 0

0 0 1






Ds

Ys

Ls




=



DsCβ + YsSβ

−DsSβ + YsCβ

Ls


 .

(76)

It is assumed that the Ds terms are absorbed into the thrust terms in equation (75).
Substituting equations (73), (74), (75), and (76) into equations (69) and (70) gives the final equations

for β̇ and α̇ to be

β̇ =
1

mVT

(
(Ys + FTy

)Cβ +mgSµCγ − FTx
CαSβ − FTz

SαSβ

)
+ (pSα − rCα) (77)

α̇ =
1

mVTCβ
(−Ls +mgCµCγ − FTx

Sα + FTz
Cα) + (−pCαTβ + q − rSαTβ). (78)

Now, the equation for µ̇ can be derived since the derivation involves the results given in equations (77)
and (78). Starting from equation (57) on page 56 of Reference [12], where, for this document β = −σ
in Reference [12], the relationship between the angular body accelerations and the local horizon angular
accelerations are expressed as



p− β̇Sα

q − α̇

r + β̇Cα


 =



CαCβ −CαSβ −Sα

Sβ Cβ 0

SαCβ −SαSβ Cα






1 0 −Sγ

0 Cµ SµCγ

0 −Sµ CµCγ






µ̇

γ̇

χ̇


 . (79)

Taking the inverse of equation (79), the equation for µ̇ is determined to be

µ̇ = (p− β̇Sα) (CαCβ − TγCαSβSµ − TγSαCµ) + (q − α̇) (Sβ + TγCβSµ)

+ (r + β̇Cα) (SαCβ + TγCαCµ − TγSαSβSµ) .
(80)

Substituting equations (77) and (78) into equation (80) and simplifying gives the final equation for µ̇, which
is

µ̇ =
1

mVT

(
Ls(Tβ + TγSµ) + (Ys + FTy

)TγCµCβ −mgCγCµTβ + (FTx
Sα − FTz

Cα)(TγSµ + Tβ)

− (FTx
Cα + FTz

Sα)TγCµSβ

)
+ pCα sec(β) + rSα sec(β).

(81)
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Finally, equations (77), (78), and (81) are combined together in vector-matrix equation form as



β̇

α̇

µ̇


 =




1

mVT

(
(Ys + FTy

)Cβ +mgSµCγ − FTx
CαSβ − FTz

SαSβ

)

1

mVTCβ
(−Ls +mgCµCγ − FTx

Sα + FTz
Cα)

1

mVT

(
Ls(Tβ + TγSµ) + (Ys + FTy

)TγCµCβ −mgCγCµTβ

+ (FTx
Sα − FTz

Cα)(TγSµ + Tβ) − (FTx
Cα + FTz

Sα)TγCµSβ

)




+




Sα 0 −Cα

−TβCα 1 −TβSα

sec(β)Cα 0 sec(β)Sα






p

q

r




(82)

where p, q, and r are the desired angular body rates. It should be noted that it is assumed that the forces due
to control surface deflections are negligible, and therefore, the force terms in equation (82) are approximated
from look-up tables for the force and moment coefficients at points where the control surface deflections are
equal to 0. Also, it is assumed that for the desired angular body rates that the inner loop p, q, r controller
is perfect, which means that the desired angular rates equal the commanded angular rates.

Given equation (82), which is now in the form of equation (1), the adaptive dynamic inversion controller
can be constructed using equations (5) and (13).

VI. Robustness Analysis

Based on the control and adaptive laws derived in the previous sections, a simulation of the entire GHV
system with the nonlinear adaptive nonlinear dynamic inversion control architecture was created in Simulink.
In order to make the simulation more realistic, second-order actuator dynamics with damping ratio ζ = 0.7
and natural frequency ωn = 25 Hz are included in the current simulation, and position and rate limits are
placed on the control surfaces of 30 deg and 100 deg/s, respectively. Additionally, a time delay of 0.03 s is
included in the simulation; however, it should be noted that the simulation can tolerate time delays of up to
0.04 s without the responses becoming significantly oscillatory. Commands to α, β, and µ are given as ramp
signals from 0 degrees to a commanded angle in fixed time. For the α, β, µ inversion controller, the basis

function β(x; d) is chosen to be β(x; d) =
[
c α β µ M

]T

, where c is a constant bias term. For the p, q,

r inversion controller, the basis function β(x; d) is chosen to be β(x; d) =
[
c p q r α β M

]T

, where

c is a constant bias term.
The total velocity of the vehicle is controlled using a PID controller, which is not depicted in Figure 2.

The input to the controller is the commanded total velocity of the GHV, and the output of the controller
is the equivalence ratio. The equivalence ratio is the fifth control, and along with the four control surfaces,
completes the the control complement for the vehicle. Additionally, a saturation limiter has been added
after the velocity PID controller to constrain the equivalence ratio to be between 0 and 1.

In the derivation of the adaptive dynamic controllers in Section III, a reference model was described. The
difference between this reference model and the actual system dynamics constitutes the tracking error of the
system. In order to determine the reference states of the system, the reference signal r must be defined. For
the α, β, µ inversion controller, the reference signal consists of the commanded values of α, β, and µ. For
the p, q, r inversion controller, the reference signal consists of the commanded angular body rates from the
α, β, µ inversion controller. Both of the reference models have the general form



ẋ1

ẋ2

ẋ3


 =



ξ1 0 0

0 ξ2 0

0 0 ξ3






x1

x2

x3


 +



η1 0 0

0 η2 0

0 0 η3






r1

r2

r3


 (83)

where ξ1, ξ2, ξ3, η1, η2, and η3 are scalars that define the desired time constants of each control channel.
The open-loop poles of the linearized dynamics at the flight condition of Mach 6 at 80,000 ft for both the

longitudinal and lateral-directional states are shown in Figure 3. It should be noted from the eigenvalues
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Figure 3. Open-loop poles for the linearized longitudinal and lateral/directional dynamics.

Table 1. Eigenvalues for the linearized longitudinal dynamics.

Eigenvalue Damping Ratio Natural Frequency (rad/s)

-2.14 1.00 2.14

−2.79 × 10−3 1.00 2.79 × 10−3

1.25 × 10−3 ± 0.111j -0.0113 0.111

1.96 -1.00 1.96

Table 2. Eigenvalues for the linearized lateral/directional dynamics.

Eigenvalue Damping Ratio Natural Frequency (rad/s)

-6.10 1.00 6.10

2.22 × 10−16 -1.00 2.22 × 10−16

0.088 -1.00 0.088

5.96 -1.00 5.96
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listed in Tables 1 and 2 that both the longitudinal and lateral-directional states have several eigenvalues in
the right-half plane, which indicates that the GHV is an unstable vehicle. A nonlinear adaptive dynamic
inversion controller will be able to suppress the unstable dynamics and replace them with desired dynamics
for the aircraft.

Figures 4 and 5 show representative simulation results with the nonlinear adaptive dynamic inversion
control architecture for the commands α = ±2 deg, β = 0 deg, and µ = 70 deg. The responses are well-
behaved, and the control architecture is able to achieve the desired tracking performance without excessive
control effort.
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Figure 4. State responses for the commands α = ±2 deg, β = 0 deg, and µ = 70 deg.

A robustness analysis was performed via simulation on the designed adaptive nonlinear dynamic inversion
control architecture from the previous section in order to determine the maximum tolerable uncertainties
in selected parameters for the control architecture. Uncertainties in the plant examined in the analysis
include the additive uncertainties ∆Cmα

, ∆Cnβ
, and ∆Cm and multiplicative gains D on the control surface

deflections, given in terms of equations as

Cm = Cmbaseline
+ ∆Cmα

α (84)

Cn = Cnbaseline
+ ∆Cnβ

β (85)

Cm = Cmbaseline
+ ∆Cm (86)

Cδ = DCδo
. (87)

The criteria for determining the bounds on the uncertainties is that the states must not demonstrate oscil-
latory behavior.

Tables 3 and 4 provide the maximum and minimum values of the additive uncertainties ∆Cmα
and ∆Cnβ

for various α, β, and µ commands. It should be noted that an examination of the maximum and minimum
baseline values of Cmα

and Cnβ
show that these values are on the order of 10−4, which is typical of a

high-speed vehicle. The maximum and minimum values for ∆Cmα
and ∆Cnβ

in Tables 3 and 4 are on the
order of 10−4 − 10−3, and therefore, the control architecture is able to withstand considerable uncertainties
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Figure 5. Control and adaptive weight responses for the commands α = ±2 deg, β = 0 deg, and µ = 70 deg.

in Cmα
and Cnβ

and maintain stable tracking flight. Similar results for the additive uncertainty ∆Cm can
be found in Table 5.

Table 6 contains the minimum allowable multiplicative gains D on the control surface deflections for
various α, β, and µ commands. These gains represent a loss of control effectiveness for one or more of the
control surfaces on the GHV. For all cases, the vehicle is able to tolerate low values of control effectiveness,
which shows that the control architecture is robust to loss of control effectiveness.

Table 3. Additive uncertainty ∆Cmα over a 30 s period with 0.03 s time delay.

α (deg) β (deg) µ (deg) max ∆Cmα
min ∆Cmα

(deg−1) (deg−1)

5 0 0 0.0005 -0.0013

5 1 20 0.0003 -0.0011

It should be noted that following this preliminary analysis of the nonlinear adaptive dynamic inversion
control architecture, pseudo-control hedging ([17],[18]) was added to the simulation in order to protect
the nonlinear adaptive dynamic inversion control architecture during periods of control surface saturation.
However, for most of the cases simulated for the GHV for this paper, control surface saturation was not
encountered.

VII. Reference Trajectory Generation

While the tracking of α, β, and µ was achieved as demonstrated in Section VI, it was desired that the
GHV have the ability to track a realistic trajectory instead of selected commands. In order to control flight
path angle γ as opposed to α, a nonzero setpoint (NZSP) controller ([19], [20]) was designed to generate
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Table 4. Additive uncertainty ∆Cnβ
over a 30 s period with 0.03 s time delay.

α (deg) β (deg) µ (deg) max ∆Cnβ
min ∆Cnβ

(deg−1) (deg−1)

0 1 0 0.007 -0.003

5 0 20 0.01 -0.004

5 1 20 0.006 -0.003

Table 5. Additive uncertainty ∆Cm over a 30 s period with 0.03 s time delay.

α (deg) β (deg) µ (deg) max ∆Cm min ∆Cm

5 0 0 0.0005 -0.003

5 1 20 0.0005 -0.002

Table 6. Multiplicative gains D on control surface deflection terms over a 30 s period with 0.03 s time delay.

α (deg) β (deg) µ (deg) Dδf,r
Dδf,l

Dδt,r
Dδt,l

5 0 0 1 0.14 1 1

5 0 0 1 1 1 0.01

5 0 0 0.15 0.15 1 1

5 0 0 1 1 0.15 0.15

5 0 20 1 0.31 1 1

5 0 20 1 1 1 0.01

5 0 20 0.21 0.21 1 1

5 0 20 1 1 0.30 0.30

5 1 20 1 0.42 1 1

5 1 20 1 1 1 0.05

5 1 20 0.38 0.38 1 1

5 1 20 1 1 0.38 0.38
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trajectories for the GHV to follow. The NZSP controller requires a linear model, so the nonlinear GHV plant
model was linearized about a flight condition specified by the Mach number and altitude. Assuming that the
vehicle remains wings-level during its flight of the trajectory, only the longitudinal dynamics model will be

required for the trajectory generation. For the NZSP controller, the longitudinal states are
[
u θ q α

]T

,

and the controls are
[
δT δe

]T

where δT represents the equivalence ratio control, and δe represents the

elevator control, expressed in terms of the GHV controls as δe = (δf,r + δf,l) /2. The outputs ym to be
commanded by the NZSP controller are velocity u and flight path angle γ, which can be expressed in
matrix-vector form as

ym =

[
u

γ

]
=

[
1 0 0 0

0 −1 0 1

]



u

θ

q

α


 +

[
0 0

0 0

] [
δT

δe

]
. (88)

By fitting a polynomial to the trajectory generated for γ, and finding the derivative of that polynomial,
the reference model for γ is completely defined for the GHV simulation. In order to implement the γ, β, µ
inversion controller, the dynamic equation for γ̇ must be derived and written in the form of equation (1) as

γ̇ = f(s) + g(s)



p

q

r


 (89)

where s represents the states in the GHV simulation. The equation for γ̇ is derived using the same process
that was applied to find µ̇ in Section V. Starting from equation (79), and taking its inverse, the equation
for γ̇ is determined to be

γ̇ = D(p− β̇Sα) + E(q − α̇) + F (r + β̇Cα) (90)

where
D = CαSβCµ − SαSµ (91)

E = CβCµ (92)

F =
Cα

2SβCµ
2
− CαSα

(
Sβ

2 + 1
)
CµSµ +

(
Sα

2Sµ
2
− 1

)
Sβ

CαSβSµ + SαCµ
. (93)

Consider the equations for β̇ and α̇ in equations (77) and (78), respectively to have the following form

β̇ = fβ + (pSα − rCα) (94)

α̇ = fα + (−pCαTβ + q − rSαTβ) (95)

where fβ and fα represent the terms in β̇ and α̇, respectively, that do not depend explicitly on the angular
rates p, q, and r. Substituting equations (94) and (95) into equation (90) and simplifying the expression
gives the resulting equation for γ̇ that

γ̇ = −DfβSα − Efα + FfβCα

+ p
(
D −DSα

2 + ECαTβ + FCαSα

)

+ q (0)

+ r
(
DCαSα + ESαTβ + F − FCα

2
)
.

(96)

Note that there is no dependence on q in the equation for γ̇. Consequently, when the dynamic equations for
β, γ, and µ are expressed in the form 


β̇

γ̇

µ̇


 = f(s) + g(s)



p

q

r


 (97)
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where s represents the states of the GHV, the resulting expression for g(s) is

g(s) =




Sα 0 −Cα(
D −DSα

2 + ECαTβ + FCαSα

)
0

(
DCαSα + ESαTβ + F − FCα

2
)

sec(β)Cα 0 sec(β)Sα


 . (98)

As can be seen in equation (98), g(s) is not invertible, which causes a problem with the computation of p, q,
and r in the new γ, β, µ inversion block. If g(s) cannot be inverted, then the commands for p, q, and r cannot
be determined for the inversion controller. Therefore, substituting the equation for γ̇ for the equation for α̇
in the α, β, µ inversion controller in order to track a trajectory for γ is not possible for the GHV simulation,
and another method of including the γ trajectory in the GHV simulation had to be determined.

In order to allow for the GHV simulation to track a flight path angle trajectory, a method from Reference
[21] was applied in which the equation for ḧ, where h represents the altitude of the aircraft, is written in the
form

ḧ = fh(s) + gh(s)



p

q

r


 . (99)

Given the equation for ḣ
ḣ = V (CβCαSθ − SβSφCθ − CβSαCφCθ) , (100)

where V is the total velocity of the vehicle, the equation for ḧ is determined to be

ḧ =
[
b0V̇ + b1β̇ + b2α̇

]
+

[
a0 a1 a2

]


p

q

r


 (101)

where
a0 = b4

a1 = b3Cφ + b4SφTθ

a2 = b4CφTθ − b3Sφ

and
b0 = CβCαSθ − SβSφCθ − CβSαCφCθ

b1 = V (−SβCαSθ − CβSφCθ + SβSαCφCθ)

b2 = V (−CβSαSθ − CβCαCφCθ)

b3 = V (CβCαCθ + SβSφSθ + CβSαCφSθ)

b4 = V (−SβCφCθ + CβSαSφCθ) .

Because ḧ has a nonzero coefficient for q, which means that the term g(s) in equation (97) is invertible,
the equation for ḧ can replace the equation for α̇ in equation (82) for the α, β, µ inversion controller. The
original reference trajectory that is generated for γ using the NZSP controller can be converted to ḣ using
the relation from aircraft kinematics that ḣ = V Sγ . Once a polynomial is fitted to the new trajectory for

ḣ, and the derivative of that polynomial is determined, the reference model is defined for ḣ. The ḣ, β, µ
inversion controller replaces the original α, β, µ inversion controller in the GHV simulation, and now desired
trajectories for γ can be tracked.

VIII. Simulation Results

The GHV simulation with the ḣ, β, µ inversion controller was implemented in Simulink. A trajectory
for γ was generated at the flight condition of Mach 6 at 80,000 ft. Figures 6, 7, and 8 present representative
simulation results for the flight path angle trajectory shown in Figure 6. It should be noted that in this
particular simulation, a command of β = −4o also is given to the GHV. The nonlinear adaptive dynamic
inversion control architecture achieves the desired tracking performance for the generated flight path angle
trajectory and sideslip angle.
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A simplified inlet unstart model was added to test the ability of the nonlinear adaptive dynamic inversion
control architecture to handle tracking a trajectory during an inlet unstart. For the simulation, an inlet
unstart is triggered at a specified time, and the loss of thrust and changes to aerodynamic parameters
following the unstart are modeled as instantaneous changes. The coefficient of the axial force (CA) is
increased slightly, and the coefficient of the normal force (CN ) is decreased slightly. Additive variations in
Cmα

and Cnβ
are included in the plant through the equations

Cm = Cmbaseline
+ ∆Cmα

α (102)

Cn = Cnbaseline
+ ∆Cnβ

β. (103)

Through a robustness analysis, it was determined that the maximum destabilizing additive variations in Cmα

and Cnβ
that the nonlinear adaptive dynamic inversion control architecture could tolerate were ∆Cmα

=
0.001 deg−1 and ∆Cnβ

= −0.001 deg−1.
Figures 9, 10, and 11 show the results for the GHV simulation during flight path angle tracking with an

inlet unstart that occurs at time t = 10 seconds. It should be noted in Figure 11 that while the equivalence
ratio is commanded to its maximum value following the inlet unstart, thrust is not being generated by the
vehicle after time t = 10 seconds. While tracking performance is somewhat degraded, the aircraft is still
able to nominally track the specified flight path angle trajectory.
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Figure 6. Flight path angle response compared with the generated flight path angle trajectory. The subscript
p represents the flight path angle computed from the polynomial fit of ḣ.

IX. Conclusions

Because the dynamic equations for the GHV are inherently nonlinear and the aerodynamic and control
derivatives for the aircraft have significant uncertainty associated with them, a nonlinear adaptive dynamic
inversion control architecture was selected as the preferred control architecture to stabilize and control the
aircraft. Based on the simulation results and the robustness analysis, it can be seen that the objective of
designing a control architecture that is robust in order to achieve desired tracking performance was achieved
for the GHV. The control architecture is robust to decreases in control surface effectiveness, changes in
system parameters, and time delays of 0.04 s or less. The responses for tracking generated flight-path angle
trajectories are well behaved, and the necessary control effort for tracking is not excessive. Additionally, the
control architecture is able to tolerate an inlet unstart and maintain nominal tracking of a specified flight
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Figure 7. State responses for the generated flight path angle trajectory.
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Figure 8. Control and adaptive weight responses for the generated flight path angle trajectory.
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Figure 9. Flight path angle response compared with the generated flight path angle trajectory during an inlet
unstart. The subscript p represents the flight path angle computed from the polynomial fit of ḣ.
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Figure 10. State responses for the generated flight path angle trajectory during an inlet unstart.
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Figure 11. Control and adaptive weight responses for the generated flight path angle trajectory during an
inlet unstart.

path angle trajectory. Therefore, it can be concluded that this approach of nonlinear adaptive dynamic
inversion control works well as a control architecture for the GHV.
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