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Adaptive Dynamic Inversion Control of Linear Plants
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Abstract—For a class of linear time-invariant systems with
uncertain parameters, this paper proposes and develops a notion
of the Domain of Control Authority to achieve stable adaptation
in the presence of control position limits. The Domain of Control
Authority defines the subspace in which the plant state can be
driven in any arbitrary direction by bounded control. No re-
strictions are placed on the stability of the open-loop system. To
address the problem of containing the state within the Domain of
Control Authority, a switching control strategy with a direction
consistent control constraint mechanism is developed for an
unstable plant. This restricts the resultant direction of the rate of
change of the state to be the same as the direction of the desired
reference state. Stability proofs are provided, and controller
performance is demonstrated with numerical examples of a two
degree-of-freedom dynamic model and an F-16XL aircraft model.

Index Terms—Adaptive control, control saturation constraints,
direction consistent control constraint mechanism, dynamic inver-
sion, linear systems.

I. INTRODUCTION

A CTUATOR saturation is a major consideration for all
practical control systems, and many strategies to over-

come its effects have been studied. For example, Hu and Lin
have done seminal work in analyzing the controllability and sta-
bilization of unstable, linear time-invariant systems with input
saturation [1]–[3]. They explicitly identified the null control-
lable region of the state-space for linear systems with saturated
linear feedback. However, their work does not address systems
with uncertain parameters. Traditionally, adaptive control
assumes full control authority and lacks a theoretical basis for
control in the presence of actuator saturation limits. Saturation
is a problem for adaptive systems since continued adaptation in
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the presence of saturation may lead to instability. In the past,
much effort has been expended for adaptive control design
in the presence of input saturation constraints [4]. Karason
and Annaswamy presented the concept of modifying the error
proportional to the control deficiency [5]. They laid out a
rigorous mathematical proof of the boundedness of signals
for a model reference framework and identified a set of initial
conditions of the plant and the controller for which a stable
controller could be realized. Akella, Junkins, and Robinett de-
vised a methodology to impose actuator saturation constraints
on the adaptive control law analogous to Pontryagin’s principle
for optimal control in order to make the error energy rate as
negative as possible with admissible controls [6]. They iden-
tified a boundary layer term, which is the difference between
the calculated control and the applied control, and imposed
conditions on the adaptive update laws to bound the boundary
layer thickness. More recently, Johnson and Calise applied
the concept of “pseudo-control hedging” to adaptive control,
which is a fixed gain adjustment to the reference model that is
proportional to the control deficiency [7]. Lavretsky and Hov-
akimyan have proposed a new design approach called “positive
-modification” that guarantees that the control never incurs
saturation [8]. In [9] the “ adaptive controller” is extended
to include control constraints for linear plants with known
control influence. Hong and Yao [10] synthesized a robust con-
troller specifically for precision control of linear motor drive
systems using backstepping, while addressing the different
physical uncertainties. Kahveci and Ioannou [11] extended
the anti-windup compensator design for stable systems with
actuator position and rate limits, and a similar problem was
addressed in Leonessa et al. [12] by modifying the reference to
maintain system stability and control within bounds.
Dynamic Inversion is an approach which has been widely

used in recent years for the control of nonlinear systems, es-
pecially in the field of aerospace engineering [13]–[16]. A fun-
damental assumption in this approach is that the inherent plant
dynamics are modeled accurately, and therefore can be canceled
exactly by the feedback functions. In practice, this assumption
is not realistic; the dynamic inversion controller requires some
level of robustness to suppress undesired behavior due to plant
uncertainties. To overcome this robustness problem, an adap-
tive model of the plant dynamics sometimes is used to facilitate
the inversion, which is then updated in real-time based on the
response of the system. This gives rise to an entire class of con-
trollers which may be referred to as adaptive dynamic inversion
controllers [17].
This paper investigates problems introduced in adaptive dy-

namic inversion control schemes due to bounds on the control
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and develops a three component control scheme to overcome
them. The contributions of this paper are the identification of
the domain of attraction considering the control position limit
and the development of a switching control strategy to contain
the plant within this domain. Another novel idea is that of a di-
rection consistent control constraint mechanism in the presence
of control saturation. This is achieved in part by preserving the
control input direction. While the idea of preserving the control
input direction using control allocation is not entirely new [18],
it is restricted to preserving the direction of the control vector
only. This paper formalizes and extends a concept by Tandale
and Valasek in [19] that not only preserves the direction of the
control, but also attempts to preserve the direction of the re-
sultant rate of change of the state to be the same as that of the
desired rate. Additionally, a modified adaptation mechanism is
implemented to prevent incorrect adaptation arising from tra-
jectory errors due to control saturation. Here the mathematical
development of the control scheme and the adaptation mecha-
nisms is presented, along with proofs for the convergence of the
tracking error and the stability of the overall control scheme.
This paper is organized as follows. Section II describes the

class of plants that are considered. Section III defines the con-
cept of the Domain of Control Authority (DCA) for plants with
bounded control. The switching control strategy and the direc-
tion consistent control constraint mechanism are explained in
Section IV. The development of the control law and the modi-
fied update law to prevent the incorrect update of parameters due
to saturation is presented in Section VI. Section VII presents
simulation results for a two-dimensional planar plant and an
F-16XL aircraft model. Finally, conclusions are presented in
Section VIII.

II. SYSTEM DYNAMICS

Consider linear time-invariant continuous dynamic systems
of the form

(1)

where is the state vector, is the ma-
trix of unknown plant parameters, is the vector of
applied controls driving the system, and is the un-
known control effectiveness matrix. For this work, the number
of controls equals the number of states so that the control effec-
tiveness matrix is square and non-singular to permit dynamic
inversion. Each control is symmetrically bounded between
the values . The plant matrices and are not
known exactly. The nominal values of the plant matrices and
are specified, with a percentage uncertainty for each element

of the plant matrix given as

(2)

(3)

where and .
The reference trajectory is specified in terms of , which is

chosen such that it is uniformly continuous, bounded, and dif-
ferentiable with first order continuous, bounded derivatives .
The control objective is to track any feasible reference trajec-
tory that can be followed within the control limits. For trajec-

tories that are not feasible with respect to the control limits, the
objective is to track the reference trajectory as closely as pos-
sible, while maintaining stability and ensuring that all signals re-
main bounded. Further, it is assumed that the entire state vector
is measurable and that no observer is necessary to estimate the
states.

III. DOMAIN OF CONTROL AUTHORITY (DCA)

One of the most fundamental issues associated with the con-
trol of a system is controllability. While unconstrained control-
lability [20] has been well understood for several decades, the
understanding of constrained controllability is incomplete [4].
The following discussion considers how bounds on controls af-
fect controllability. While a linear scalar plant is used to eluci-
date the concepts, the discussion extends to multiple-input-mul-
tiple-output (MIMO) plants in which the number of controls
equals the number of states. Consider

(4)

where , and , are unknown scalars with
and such that the inherent dynamics are

stable. The applied control is bounded symmetrically as
, where is a known control limit.

There are two types of constraints that may be imposed on
the plant state-space because of the bounds on the control.
1) Control Authority Constraint: If the plant is open-loop
stable, the only diverging tendency that can propagate the
system away from the equilibrium point is provided by
the control. This diverging tendency can be infinite for a
system which is controllable and has unbounded control. If
the control is bounded, there will be a boundary in the state-
space beyond which the converging tendency of the plant
is greater than the diverging tendency due to the bounded
control.

2) Tracking Constraint: Consider the plant model from (4).
Since the control is bounded within , the rate
of change of the state at any point of time is bounded by

if
if

(5)

where is the plant state at that instant of time. Any ref-
erence trajectory that the plant can successfully track must
satisfy the rate bounds listed in (5).

The controllability test for linear systems ensures that the
control can affect every state, but does not consider the effect
of bounds on the control. To have complete authority over the
plant, the bounded control must be able to overcome the inherent
plant dynamics and prescribe the desired dynamics.

A. Case 1: Stable Plant

Considering the plant model of (4), the inherent plant dy-
namics are given by the term . The control authority is lim-
ited by the bounds on the control to values of , so there
exists boundaries in the plant state-space beyond which the in-
herent plant dynamics will dominate the control effort, and the
plant will not be controllable. These boundaries will be reached
when an extremal control is necessary to cancel the inherent
plant dynamics. In the interior region the control has the ability
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Fig. 1. Phase plot showing the domain for a traceable trajectory for an open-
loop stable plant and for a neutrally stable plant. (a) Phase plot for an open-loop
stable plant. (b) Phase plot for a neutrally stable plant.

to nullify the inherent plant dynamics without reaching its ex-
tremal values. This interior region is called the DCA. Referring
to Fig. 1(a), the boundaries in terms of the plant state are

(6)

(7)

(8)

Equation (8) gives the vertical bound, and (5) gives the bounds
on the rate of change of the state. Outside of the DCA boundary

and the plant moves toward the origin. If the initial state
is within the DCA, then the control cannot drive the state out-
side the DCA. If the initial state is outside the DCA, the in-
herent plant dynamics will drive the state into the DCA. Thus
the bounded control does not lead to instability for an open-loop
stable plant, but only to a limited operational envelope for the
plant.

B. Case 2: Neutrally Stable Plant

The derivative of the state is affected only by the control

(9)

The plant state is not bounded and can take any value on
, but the rate of change of the state is limited due to

the control bound. The rate limits for a traceable trajectory [see
Fig. 1(b)] are

(10)

C. Case 3: Unstable Plant:

For current state the unforced response drives the
plant away from the state . If the plant reaches a state
where the destabilizing tendency becomes greater than the max-
imum restoring contribution that the control can provide, then
the state continues to diverge, such that if

. These points determine the boundary of the DCA.
If the state crosses these points, stability of the system cannot
be recovered.

IV. SWITCHING CONTROL STRATEGY

Consider a plant that is required to track an arbitrary reference
trajectory using a dynamic inversion controller. The bounded
control must cancel the inherent plant dynamics yet retain suf-
ficient control effort to prescribe a rate of change of the state in
any arbitrary direction of the state-space. If an extremal value of
control is necessary to cancel the inherent plant dynamics, then
there is at least one direction in which the plant state cannot
be driven. Therefore, the DCA consists of the set of the system
equilibrium states. Depending on the system stability, some of
these plant states can be driven in any arbitrary direction by
a bounded control. The boundary of the DCA is defined by
the states in which at least one control must take on its ex-
tremal value in order to cancel the inherent plant dynamics. Out-
side the DCA open-loop stable plants can never cross the DCA
boundary and remain bounded. Unstable plants diverge since
the inherent diverging tendency dominates the maximum pos-
sible converging tendency that the control can provide.
The solution strategy proposed here is to identify the DCA

and to develop a control law to prevent the plant state from
crossing the DCA boundary. The control required to perform
the tracking objective may be applied when the state is not near
the DCA boundary. Once the state nears the DCA boundary,
the control can be switched to a stabilizing control that cancels
the plant dynamics and provides a restoring tendency toward
the origin. It should be noted that whenever the state is within
the DCA, the magnitude of the rate of change of the state is
restricted because of the bounded control, but the direction of
the rate of change of the state is not limited. The Sections IV-A
and IV-B discuss methods to identify the DCA boundary and
the concept of stabilizing control.

A. Enforcing the Switching Control Law Without Explicit
Identification of the DCA Boundary

The DCA is defined by the states where at least one control
must equal its extremal value in order to cancel the inherent
plant dynamics. At the boundary of the DCA, (1) becomes

(11)

The entire DCA boundary can be evaluated by substituting all
possible values that the vector can take such that
for at least one , where and indicates the th
control input.
Consider a 2-D state-space for simplicity of analysis. The

DCA for this 2-D state-space defines a rectangular parallelo-
gram whose vertices are obtained from (11) when both compo-
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nents of the control vector are equal to any one of the four pos-
sible permutations of the extremal values . The
edges of the parallelogram correspond to cases when only one
component of the control vector is equal to an extremal value.
The other component of the control vector can equal any value
within the control bounds. Consequently, the DCA boundary
can be calculated and stored. As the state approaches the DCA
boundary, the control can be switched from a tracking control
to a stabilizing control. This idea easily extends to -dimen-
sions, where the DCA is an -dimensional parallelepiped. How-
ever, this approach requires explicit identification and storage of
the DCA boundary, which can be computationally intensive for
higher dimensional plants.
An alternate approach for determining the switching con-

trol law is to use a scalar measure that keeps track of how
close the operating point is to the DCA boundary, instead of
defining the DCA boundary explicitly. This approach can be
implemented by identifying the control component necessary
to cancel the inherent plant dynamics, , which can be ob-
tained by solving the following equation at run-time:

(12)

The applied control can be switched from tracking to stability
as approaches , which occurs when at least one
component of is equal to . Since (12) is simple to
solve can be solved at every time step, this approach eliminates
the need for prior explicit identification of the DCA.

B. Direction Consistent Control Constraint Mechanism

For a multi-input plant the bounded control not only restricts
the magnitude of the applied control, but also changes the di-
rection of the system. Fig. 2 illustrates this concept. Consider
a scenario with two controls and . Assume that the con-
trol calculated by the control algorithm to track a desired refer-
ence is greater than the control bounds shown by the box. If
each control is saturated to its respective maximum, the control
applied to the plant, , has a significantly different direction
compared to . When this control is applied to the plant the
resulting rate of change of state also has a different direction
than the desired direction. Here we develop a control strategy
that implements , direction consistent shown in Fig. 2 that is
within the position limits, which not only maintains the same
direction as , but also attempts to preserve the direction of
the resultant rate of change of the state so that the direction of
the resultant rate of change of the state is the same as that of the
desired rate.
Consider Fig. 3 in which the plant is of the form

and the desired control required to track the reference trajectory,
, is calculated. If is outside the control bounds,

the saturated version of the control is applied. In Fig. 3(a),
each component of is saturated to its respective max-
imum value. Consequently, has a different direction com-
pared to , and the resultant direction of is different
from . In Fig. 3(b), the saturation is enforced in such a
way that the direction of is the same as that of .

Fig. 2. Direction consistent control constraint mechanism.

However, the preservation of the control direction does not en-
sure that the resultant direction of is the same as that of

.
The control is calculated in two parts. The control necessary

to cancel the inherent plant dynamics is calculated first, and then
the control which produces a rate of change of the state in the
desired direction is calculated. Referring to Fig. 3(c), the first
component of the calculated control is equal to , and the
second part is equal to . The first part of the calculated
control will be within the control position limits since the plant
state is restricted within the DCA. The second part of the con-
trol is subjected to direction consistent control saturation, which
preserves the direction of the control vector. Therefore, the satu-
rated version of the second part of the control equals , which
also ensures that the direction of the resultant rate of change of
the state is the same as the desired rate.

V. TRACKING CONTROL LAW

The plant model is of the form given by (1)

(13)

where and are known constant matrices of compatible di-
mensions and the following assumptions hold.
Assumption A1: is non-singular.
Assumption A2: The initial condition is such that

satisfies for all .
From this condition, due to continuity, there always exists a

scalar such that also satisfies
for all .

Assumption A3: We assume here that is chosen such
that holds.
The tracking error is defined as

(14)

Differentiating the tracking error with respect to time, and sub-
stituting (13) into (14),

(15)

Adding and subtracting to (15), the equation for the error
dynamics becomes

(16)
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Fig. 3. Rate of change of the state due to various control saturation strategies.
(a) Each component saturated to maximum. (b) Direction consistent control pre-
serving the direction of the control vector. (c) Direction consistent control pre-
serving the direction of the resultant rate of change of the state.

If

(17)

we have . The parameter thus governs the closed-
loop dynamic system behaviour and needs to be chosen appro-
priately such that assumptions A2 and A3 are satisfied. We now
state the following definitions:

(18)

and

(19)

Note that (18), referred in this work as the tracking control, has
two components. The first term cancels the
inherent plant dynamics. The second term pre-
scribes the desired dynamics necessary to track the reference
trajectory. The first component is used as ameasure of how close
the state is to the DCA boundary and will be referred to as the
stability control defined by (19).
Further, define for each th control input

(20)

where . Then, the maximum of this ratio of
stability control to the bound on each th actuator is defined as

(21)

The quantity is used as a measure of how close the current
state is to the DCA boundary. Given the definition of by
virtue of (A3), we are ensured of . It should be noted
that a value of indicates that the state is at the DCA
boundary.
For a point which is inside the DCA, but approaching the

boundary, the magnitude of keeps increasing from 0 and
reaches 1 on the boundary. To avoid saturation, choose scalar
parameters , , , and all close to 1, satisfying

that decide the switch
between tracking and stability control. Whenever, ,
the tracking control is close to being subjected to saturation. In
this case, the concept of direction consistent control mechanism
is implemented and the saturated version of the tracking control
law is employed, given by the following equation:

(22)
The direction consistent control saturation function main-
tains the direction of the resultant control to be the same as the
direction of the desired control in spite of control saturation. The
saturation function is defined in Section V-A.

A. Saturation Function Definitions
For any , we adopt a hard saturation

(23)

for all or alternately, a “soft” saturation of the
form

(24)

for all , where is any positive scalar param-
eter. Qualitatively, implies that the “soft” saturation
approaches the “hard” saturation definition stated earlier. If each
of the controls is allowed to saturate independently to the max-
imum allowed value, the applied control is

for all (25)

where is the saturation function. If direction consistency is
to be maintained, the proportion to which each control is
saturated is calculated by

for all (26)
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The minimum saturation proportion is identified

(27)

and all controls are saturated with the same proportion. Note,
by construction for all and accordingly, also
holds. As a result, the direction of the applied control vector is
the same as the calculated control vector . Therefore

(28)

B. Complete Control Law

Continuing with the discussion of , whenever its value
is greater than the stability control is employed. The other
design parameters and are used in order to produce smooth
transitions between controls; from and , and from
to . This transition can be accomplished by a linear or higher-
order interpolation as takes values from to and to
. Finally, the applied control is defined as

if and

else,
if
if
if
if

(29)

where

(30)

(31)

have been introduced for smooth transitions between controls.
The function is a third-order interpolation scheme defined as

(32)

Next, it is shown that selecting such that
ensures that . This can be proved as follows.
Let for some and let and

, then the applied control . Then for ,
and
. If

the control smoothly switches to . The control continues to
switch from there on depending on the value of parameter .
Suppose there exists a finite time such that
and , . Then,

. This would yield

(33)

Using the definition of we have for all time

(34)

(35)

which is a contradiction. Thus, for all time .
Finally, note that the closed-loop tracking error system is given
by

(36)

where is a bounded signal of time whose explicit characteri-
zation is

if and
if
if
if
if

(37)

or

if and (38)

if where (39)

if (40)

if where (41)

if (42)

Due to boundedness for , we have ensuring bounded-
ness for all closed-loop signals.

VI. ADAPTIVE CASE

Before proceeding to the control law for the case of uncertain
parameters, the following assumption is made.
Assumption B1: Both and are non-singular. Further,

suppose there exists a symmetric matrix that is either posi-
tive or negative definite such that , or

(43)

Assume also that the function is known and defined such
that when is positive definite, and
when is negative definite. Additionally define matrix ,

(44)

and let and be the maximum

and minimum eigenvalues of , respectively.
Define , , , and

, where is the specified closed-loop eigenvalue as
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defined in earlier section. Thus , and through
the application of the matrix-inversion lemma

(45)

(46)

where . Now, given and the
fact that the uncertainty satisfies from
(3), we denote

(47)

Thus, we have

(48)

wherein the values of and can be precom-
puted as well-posed optimization problems represented via (47).
Then the feasible set of values for may be defined as

such that (49)

Similarly, for , we can obtain

(50)

where .
For any given , , and and for uncertainties and

subject to (2) and (3) we can again predetermine

(51)

such that

(52)

As before, the feasible set of values for can be defined as

(53)
Further, define column vector complements of the matrices
and

(54)

(55)

with each row of defined as

for all (56)

Assumption B2: We denote , where the hat
over the variable denotes its estimated value. From (56),

and for any given

(57)

(58)

(59)

with . Assume that for any ,
for all . For some

selected such that , select the scalar such that

(60)

with (61)

and (62)

for all . Note that this assumption is more con-
servative than non-adaptive case.
Following the control law formulation laid out in the previous

section, but this time written in terms of and

(63)

For systems with unknown and matrices, the control law is
defined as

if and

else,
if
if
if
if

(64)

where

(65)

(66)

(67)

and are given in (30) and (31) and and are estimated
values of and . It is important to point that in this case the
definition of is revised to

(68)

(69)

where . Substituting for the control law de-
fined in (64), the closed-loop error dynamics reduce to

(70)

where

(71)
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that is

if and (72)

if where (73)

if (74)

if where (75)

if (76)

or

for all (77)

In terms of column vector complements defined in (56)–(57),
rewrite the closed-loop error dynamics as

(78)

with terms and defined such that

(79)

(80)

A. Adaptive Laws

To satisfy the given bounds on parameters and avoid param-
eter drift, the projection scheme from [21] is adopted

(81)

(82)

where is defined as

if
if
if .

(83)

The adaptive laws selected to be

if

else (84)

and if at some , , , reset
such that .

(85)

for any , and the adaptive gain is chosen to satisfy

(86)

B. Stability Analysis

To prove stability of the control laws in (64) and the adap-
tive laws specified in (84)–(85), choose the following Lyapunov
function candidate:

(87)

Details of the proof that this Lyapunov function is non-negative
are presented in [21]. Now take the time derivative of (87), and
noting that the true parameters are constant

(88)

For the case substitute for from (44) and the adaptive
laws from (84)–(85)

(89)

Using completion of squares

(90)

where . Note from (77) is a function of
that is bounded due to the projection scheme adopted, reference
trajectory and its derivative that are bounded by choice
and the parameter that is a positive scalar quantity chosen by
the designer. By virtue of these signals, it is guaranteed that
is bounded for all time and its supremum exists. Furthermore

(91)

Since and , we have
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(92)

or

(93)

Thus

(94)

or

(95)

Finally, it can be concluded that

(96)

for some positive constant . This ensures that the Lyapunov
function is uniformly bounded for the case .
For the case , there is an additional term in (89)

(97)

Now

(98)

Define and .
Then

(99)

or

(100)

Let , and replicate steps (91)–(94), to get

(101)

Similar to (96), it can be concluded that

(102)

for some other finite positive constant . Therefore, from the
uniform boundedness theorem, one concludes that ,

and , which results in the boundedness of all
closed-loop signals.

C. Control Saturation Analysis

The next issue to be analyzed is whether the control signal
stays within saturation limits for all time. Suppose that at some
time , such that, .
In this case

(103)

from the definition of in (68).
For time , suppose that , then the state evolves

according to

(104)

Consider the Lyapunov function candidate

(105)

Notice that the form of (105) is similar to (87), and it can be
verified that is positive definite. Next, take the derivative of
along the trajectory in (104) to get

(106)

Substituting the adaptive law for in (84)

(107)

(108)
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Thus, one can conclude for . Further

(109)

But

(110)

Combining (109) and (110)

(111)

From (103)

(112)
Finally, from the definition of

(113)

From (112), (62), and the choices of in (86) and in (60)

(114)

(115)

Thus, every th component of the control signal stays inside the
bounds

(116)

for all such that . Therefore, it is guar-
anteed that on enforcing the control saturation condition for the
adaptive case, the control signal stays within the specified limits.

VII. NUMERICAL EXAMPLES

A. Purpose and Scope

Validation of the theoretical developments presented above
is demonstrated in this section through simulation. The exam-
ples demonstrate the direction consistent mechanism for two
unstable systems. The first example is a generic second-order
plant. The tracking results are studied for two sinusoidal tra-
jectories of different magnitudes. The purpose of this example
is to simulate the response of the closed-loop system for two
cases; one with tracking control within bounds and the other
with tracking control outside control limits. Whenever the
tracking control is within bounds, it is expected that the system
demonstrates perfect tracking. Direction consistency is demon-
strated for reference trajectories that require more control effort
than that available.

The next simulation develops and evaluates control laws for
a lateral/directional linear model representative of the F-16XL
aircraft. This example demonstrates that the control laws devel-
oped earlier are also applicable to systems of the form

(117)

This example presents the necessary equations for imple-
menting control for kinematic tracking. The motive of this
example is to compare the response of the system with and
without the switching control law. It is demonstrated that
without implementation of the switching control law the
system goes unstable, while with the switching mechanism
the plant state remains within bounds and consistent with the
reference.

B. Second-Order Unstable Plant With Unknown Parameters

This example demonstrates the concept of a direction consis-
tent constraint mechanism for an unstable second-order plant.
The control objective is to restrict the states of the system to
follow specified sinusoidal trajectories that are out-of-phase.
The nominal plant used in the simulation is specified as

(118)

(119)

The true plant matrices are randomly generated with an uncer-
tainty of 5% in each element of and for the simulation. The
control vector is symmetrically bounded between .
1) Case 1(a): The peak-to-peak amplitudes of reference for

both the states is chosen to be 2. The frequency of oscillation
for the specified reference is 1 rad/s and the two references are
out-of-phase. is chosen as 0.2. The other design variables are

, , , , and ,
with the adaptive gains chosen to be , , and

. The initial conditions of the system state is chosen
as . Figs. 4 and 5 present results for this
case. The plant state in this case perfectly follows the refer-
ence and always remains less than unity. Moreover, since
the tracking control computed using dynamic-inversion always
remains within bounds, the applied control smoothly follows
it. Further, the adaptive parameters are seen to remain within
pre-computed bounds. Since the input is not sufficiently rich,
the adaptive parameters shown in Fig. 5 do not converge to true
values.
2) Case 1(b): In this case the peak amplitudes of the refer-

ence is increased to observe direction consistency. The ampli-
tudes are chosen as and with same
frequency of oscillations as in the previous case. Figs. 6 and
7 present the results. The plant state remains bounded and di-
rection consistent with the desired reference when switching
control is implemented. With the switching control law and
direction consistent mechanism the applied control smoothly
switches from tracking control to the saturated control and is
direction consistent with the desired tracking control, without
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Fig. 4. Case 1(a) plant and control time histories. (a) Case 1(a): Plant State. (b)
Case 1(a): Applied Control.

any control chattering as seen in Fig. 6(b). Also observe that
since remains within bounds, the ratio always remains
less than 1.
Fig. 7 show the update of the adaptive parameters and .

The parameter projection successfully restricts the adaptive pa-
rameters within the parameter bounds. The adaptive parameters
do not show any definite trend in the update. The important thing
is to note that parameter convergence to a constant was demon-
strated even in presence of errors due to control saturation.

C. F-16XL Aircraft

The objective is to command an aggressive maneuver which
will saturate the controls. Using the F-16XL (see Fig. 8), the
commandedmaneuver is a bank angle doublet of 60 degwhile
simultaneously turning through a heading angle of 20 deg.

Fig. 5. Case 1(a): adaptive parameter time histories. (a) Case 1(a): Adaptive
Parameter . (b) Case 1(a): Adaptive Parameter .

The control effectors used here are aileron and differen-
tial elevon . While rudder is available as a control effector,
it is not used here for the manueuver which constists primarily
of rolling. The F-16XL linear model is displayed in the Ap-
pendix. All states and controls are perturbations from the steady,
level, 1-g trimmed flight states given in Table I. The open-loop
eigenvalues are , , and

.
1) Controller Synthesis: A reduced-order linear model is

used to develop the controller. For the strictly lateral/directional
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Fig. 6. Case 1(b) state and control time histories. (a) Case 1(b): Plant State. (b)
Case 1(b): Computed Control.

maneuver performed here, the longitudinal dynamics are ne-
glected. The model is cast into a structured form as a kinematic
part and a dynamic part using only the roll rate and yaw rate
states. However, the full model is used for simulation.
Kinematic part

(120)

(121)

Dynamic part

(122)

where is the bank angle, is the heading angle, and and
are the roll and yaw rates, respectively. The control effectors are
limited to maximum position limits of 25 deg. Uncertainty in
the aircraft dynamical model is addressed by randomly intro-
ducing errors into the stability and control derivatives during
numerical simulation. The reference trajectory is specified in

Fig. 7. Case 1(b) adaptive parameter time histories. (a) Case 1(b): Adaptive
Parameter . (b) Case 1(b): Adaptive Parameter .

Fig. 8. F-16XL external physical characteristics.

TABLE I
TRIM STATE

terms of , , , , , and . The control law and the
update laws for the adaptive parameters are developed in ac-
cordance with the theory developed in the earlier sections. For
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Fig. 9. Case 2(a) Roll rate and Bank Angle for F-16XL.

brevity only the equations required for incorporating the control
law in the simulation are presented here. The tracking errors are
defined as

(123)

(124)

To track the kinematic angles, the closed-loop dynamics are
specified as

(125)

The design parameters are , , , , , , , , and .
The tracking and saturated control are

(126)

(127)

where

(128)

The adaptive laws for the elements of and are given by
(84)–(85) with

(129)

and

(130)

(131)

2) Results and Discussion: Case 2(a) No Switching Control
Law For this case, once the control saturates maximum con-
trol is applied until the tracking control falls back into limits.
Figs. 9–11 show that for the first 10 s the tracking control stays
within bounds and the state is bounded. After 10 s, the tracking
control required is large and the plant state diverges away from

Fig. 10. Case 2(a) Yaw rate, heading angle, and sideslip angle for F-16XL.

Fig. 11. Case 2(a) Aileron and Differntial Elevon for F-16XL.

the reference. Notice that without the switching control law the
system becomes unstable.
Case 2(b) Switching Control Law In this case the switching

control law is implemented. The design constants are chosen
as which gives the value of , ,

, , , , , ,
and . Figs. 12–16 present the simulation results. At 2
s the aircraft is commanded to roll at 112 deg/s to an angle of
60 deg and simultaneously turning to a heading of 20 deg at

a yaw rate of 4.2 deg/s. Notice that the tracking control required
to perform the maneuver is beyond the position limits specified,
so the saturated control is applied since . This
is greater than the specified . The effect of applying this con-
trol is that the aircraft performs the roll at a reduced rate of 80
deg/s. At 2.7 s the tracking control lies within limits and the
applied control stays there afterwards. The bank and heading
angles settle down to their respective desired values at 10 s.
After 10 s the reference trajectory changes direction yet the

system responds accordingly and starts to track closely. The air-
craft is commanded to bank 60 deg at the rate of 110 deg/s, while
simultaneously turning to 3.5 deg at a yaw rate of 5.4 deg/s.
Since the tracking control is outside position limits, the satu-
rated control is applied. As before the roll is performed at a re-
duced rate of 67.5 deg/s. The bank and heading angles settle to
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Fig. 12. Case 2(b) Roll rate and bank angle of F-16XL.

Fig. 13. Case 2(b) Yaw rate, heading, and sidelslip for F-16XL.

Fig. 14. Case 2(b) Aileron and differential elevon for F-16XL.

their respective values at 20 s, after which the aircraft is com-
manded to return to wings level, i.e., a 0 deg bank. This is com-
manded at a rate of 55 deg/s and the tracking control is applied
within position limits. It is important to note that during this
30 s time span consistency with the reference is preserved, and
control chattering is avoided. Even though sideslip angle is
not directly controlled, it remains within bounds and well be-
haved throughout the manuever. This is because the system is
linear and minimum-phase so the internal dynamics are stable.
Further, throughout the maneuver is maintained less than

Fig. 15. Case 2(b) for F-16XL.

Fig. 16. Case 2(b) Adaptive parameters for F-16XL.

Fig. 17. Case 2(b) Adaptive parameter for F-16XL.

1. The adaptive parameters do not converge to their true values
within the duration of the maneuver, because the reference tra-
jectory is not persistently exciting. However, this is immaterial
as asymptotic trajectory tracking can be achieved irrespective
of parameter convergence.
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VIII. CONCLUSION

Based on the stability proofs and the simulation results
presented in the paper, if the control is unsaturated the tracking
error asymptotically goes to zero, and all signals in the control
scheme are bounded. If the control is saturated, the plant state
can only be guaranteed to be bounded and direction consistent
with the desired reference. The switching control strategy
successfully restricts the state within the DCA. The transition
between the tracking control and the stability control is smooth,
and the applied control does not show any chattering. The in-
stability protection switching control law can be implemented
without prior explicit identification and bookkeeping of the
DCA boundary. The control laws developed in this paper
are applicable for unstable controllable linear time-invariant
square non-singular systems with uncertainty within of
the known nominal model.

APPENDIX

The F-16XL aircraft lateral/directional model

(132)

All angular quantities are in radians.
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