J Control Theory Appl 2011 9 (3) 431-439
DOI 10.1007/s11768-011-1012-4

Multiresolution state-space discretization for
(Q-Learning with pseudorandomized discretization

Amanda LAMPTON !, John VALASEK ?, Mrinal KUMAR ?
1.Systems Technology, Inc., 13766 S. Hawthorne Blvd, Hawthorne, CA 90250, U.S.A.;
2.Department of Aerospace Engineering, Texas A&M University, 3141 TAMU, College Station, TX 77843-3141, U.S.A.;
3.Department of Mechanical & Aerospace Engineering, University of Florida, 306 MAE-A, Gainesville, FL 32611-6250, U.S.A.

Abstract: A multiresolution state-space discretization method with pseudorandom gridding is developed for the
episodic unsupervised learning method of Q)-learning. It is used as the learning agent for closed-loop control of morphing
or highly reconfigurable systems. This paper develops a method whereby a state-space is adaptively discretized by progres-
sively finer pseudorandom grids around the regions of interest within the state or learning space in an effort to break the
Curse of Dimensionality. Utility of the method is demonstrated with application to the problem of a morphing airfoil, which
is simulated by a computationally intensive computational fluid dynamics model. By setting the multiresolution method to
define the region of interest by the goal the agent seeks, it is shown that this method with the pseudorandom grid can learn a
specific goal within +0.001 while reducing the total number of state-action pairs needed to achieve this level of specificity

to less than 3000.

Keywords: Reinforcement learning; Morphing; Random grid

1 Introduction

For the computational reinforcement learning problem,
discretizing the state and action spaces is a common way
to cast a continuous state and action space problem as a
reinforcement learning problem. A simple learning prob-
lem can be easily discretized into a relatively small num-
ber of states. The learned value or action-value function is
generally a good representation of the agent’s knowledge
of the environment. A problem becomes more complex as
the number of state variables needed to represent the envi-
ronment increases. The number of states in the action-value
function depends on how a problem is discretized. There is
a trade-off, however. If the agent can only store knowledge
in a small number of states, important details of the environ-
ment may be lost. If the agent can store knowledge in a very
large number of states, details of the environment are cap-
tured quite well. The caveat is that the rate of convergence
drops drastically as the number of states increases.

Hierarchical reinforcement learning (HRL) seeks to split
a complex learning problem into a hierarchy of subtasks
or subgoals that can be learned individually. Determining
those subgoals can prove to be a challenge. This type of
learning is similar in thought to the multiresolution state-
space discretization method developed in this paper. Refer-
ence [1] discusses an algorithm that combines ()-learning
and a locally weighted learning method to select behav-
ioral primitives and generate subgoals for the agent. Refer-
ence [2] identifies subgoals by partitioning local state tran-
sition graphs. Reference [3] develops the theory of quad-Q-
learning. MAXQ is a popular HRL method that decomposes
a learning problem into a hierarchy of subtasks to be learned
using -learning. Thus, it is a hierarchical Q-learning algo-

Received 11 January 2011; revised 1 April 2011.

rithm. The method is first developed by Dietterich in [4].

A multiresolution state-space discretization method for
(2-learning using a pseudorandom grid can improve the al-
gorithm by gathering the most detailed information in and
around regions of interest, namely, the goal. ()-learning on
a continuous domain quickly becomes intractable when one
considers that convergence of the algorithm to the optimal
action-value function is only guaranteed if the agent vis-
its every possible state an infinite number of times [5]. An
agent would therefore visit an infinite number of states using
an infinite number of actions an infinite number of times.
Consider the fact that the states can be defined by anywhere
from 1 to N continuous variables and the dimensionality of
the problem becomes a significant issue. This multiresolu-
tion method provides a means of learning the action-value
function, Q™ (s, a), for a fixed policy, 7, in progressively
finer detail. It seeks a compromise between the high rate of
convergence of a coarse discretization, and the high level of
detail of a fine discretization. This method essentially cre-
ates a series of smaller problems, similar to what is done in
HRL, centered around a region of interest. This method was
first introduced in [6] and is extended to having pseudoran-
dom gridding to further break the curse of dimensionality.

The method mimics the natural tendency of people and
animals to learn the broader goal before focusing on more
specific goals within the same space. This method is applied
to the morphing airfoil architecture developed in [6-9]. Re-
inforcement learning is used to learn the commands that
produce the optimal shape based on airfoil lift coefficient
goal. The levels of discretization of the state-space must be
tuned such that good convergence and attention to detail is
achieved. The contribution of this paper is to develop a new

This work was partly supported by the Air Force Office of Scientific Research, USAF (No.FA9550-08-1-0038), and the National Science Foundation

under a Graduate Research Fellowship.

(©South China University of Technology and Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg 2011

432

discretization method that allows the learning to converge
quickly while still maintaining a high level of detail around
regions of interest in the environment.

This paper is organized as follows. Section 2 describes
the mechanics of reinforcement learning and how it is im-
plemented in Q-learning in particular. Reinforcement learn-
ing learns the optimality relations between the aerodynamic
requirements and the shape. The airfoil can then be sub-
jected to a series of aerodynamics requirements and use the
relations learned to choose a good shape for the current set
of requirements. Sections 3 and 4 describe the pseudoran-
dom grid and the multiresolution state-space discretization
method with the pseudorandom gridding, respectively. Sec-
tion 5 describes the policy comparison stopping criteria.
Section 6 describes the airfoil model and how the airfoil
problem is cast as a reinforcement learning problem. Sec-
tion 7 takes the fully developed multiresolution state-space
discretization method with pseudorandom gridding and the
policy comparison stopping criteria, applies it to the mor-
phing airfoil, and interprets a numerical example generated
from it. Finally, conclusions are drawn from the numerical
example in Section 8.

2 Reinforcement learning

Reinforcement learning is learning through interaction
with the environment to achieve a goal. More specifically,
it is learning to map situations to actions to maximize
some numerical reward. The learner or decision-maker is
the agent and does not know what actions to take a priori
as is common in most forms of machine learning. Every-
thing outside of the agent comprises the environment. The
agent’s task is to learn a policy or control strategy for choos-
ing actions that achieves its goals. To learn the correct pol-
icy, which is a state to action mapping, 7 : S — A, the
agent receives a reward, or reinforcement, from the envi-
ronment [10].

The agent and environment interact continually in a se-
ries of discrete time steps, ¢ = 0,1,2,3,.... At each time
step ¢, a series of events occur. The agent first receives some
representation of the environment’s state, s; € S, where S
is the set of all possible states. Based on the state, the agent
chooses an action, a; € A (s), where A (s) is the set of ac-
tions available to the agent in state s;. At the next time step,
the agent receives a numerical reward, ;41 € R,andisina
new state, Sy1.

As the agent moves from state to state selecting actions
and receiving rewards, it generates a mapping, as stated ear-
lier, of states to probabilities of selecting each possible ac-
tion. This policy, 7 (s, a), is the probability that a; = a
at s; = s [10]. The agent seeks to maximize the reward it
receives or, more formally, its expected return, ;.

In this paper, and for many reinforcement learning prob-
lems, it is assumed that the problems can be modeled as
Markov decision processes (MDPs) and cast in the rein-
forcement learning problem framework. A problem is con-
sidered an MDP if all the information necessary for the
agent to make a decision is incorporated in the current state.
The decision is not based on any past states visited and is
therefore path independent.

A. LAMPTON et al. /J Control Theory Appl 2011 9 (3) 431-439

There are a number of ways to solve for the value or
action-value functions that record the knowledge learned
from reinforcement learning problems. Three basic solu-
tion methods are dynamic programming (DP), Monte Carlo
methods, and temporal difference (TD) learning [10]. TD
learning can be thought of as a combination of ideas from
both DP and Monte Carlo [10]. These methods learn from
raw experience without the need for a model of the environ-
ment’s dynamics. They bootstrap in the sense that estimates
are updated during an episode based on other learned esti-
mates. TD learning methods include TD prediction, Sarsa,
Q@-learning, actor-critic methods, etc.

The algorithm used here is one-step ()-learning, which is
a common off-policy TD control algorithm. In its simplest
form, it is a modified version of equation (1) and is defined
by

Q(st, ar) = Q(s1, a1) + afrer +ymaxQ(se41,0)

—Q(s¢,a1)]. (1)
The Q-learning algorithm is illustrated as follows [10]:
1) Initialize Q(s, a) arbitrarily.
2) Repeat (for each episode).
a) Initialize s;
b) Repeat (for each step of the episode):
. Choose a from s using policy derived from Q(s, a)
(e.g., e-greedy policy),
. Take action a, observe r, s;41,
s Q (51, a1) — Q (8¢, a0) + frega
+7ymax Q (st41,0) = Q (51, a1)],
+ 8 St
¢) until s is terminal;

3) Return Q(s, a).

The agent learns the greedy policy, and as the learning
episodes increase, the learned action-value function Q(s, a)
converges asymptotically to the optimal action-value func-
tion Q*(s, a). The method is an off-policy one as it eval-
uates the target policy (the greedy policy) while following
another policy. The policy used in updating (s, a) can be a
random policy, with each action having the same probabil-
ity of being selected. Another option is an e-greedy policy,
where € is a small value. The action a with the maximum
Q(s,a) is selected with probability 1 — , otherwise a ran-
dom action is selected.

3 Staggered grid generation

It is well known that orthodox rectangular grid-based dis-
cretization suffers from the curse of dimensionality. The
current problem of)-learning presents a similar challenge
because it is desired to uniformly place nodes in high-
dimensional spaces. This should be achieved without caus-
ing an explosion in the number of nodes required to obtain
efficient domain coverage. One way to fulfill this objective
is through the use of random number generators (Monte
Carlo methods). A random number generator typically cre-
ates a uniformly distributed sample that covers the domain
of interest. Another technique, which is especially popular
in recent times, is the use of pseudorandom numbers. These
various methods of domain discretization are illustrated in

A. LAMPTON et al. /J Control Theory Appl 2011 9 (3) 431-439

Fig. 1.
Also called quasirandom numbers, pseudorandom num-
bers have properties similar to uniformly distributed random
samples but are generated algorithmically (as opposed to a
random number generator). They have been widely used to
evaluate high-dimensional integrals and solve partial differ-
ential equations. They provide distinct benefits over both
orthodox lattice like grids and purely random Monte Carlo
methods. Compared to the former, they provide an easy way
of breaking the curse of dimensionality because no mesh-
ing among nodes is required. This is also true for Monte
Carlo methods (compare Fig. 1 (a) to Figs. 1 (b)—(c)). Com-
pared to Monte Carlo methods, pseudorandom grids pro-
vide at least two distinct benefits. First, as opposed to purely
1.0

T T T

B D T S L

g [s aneneiaavinersestons tordininaiies mins

Ty

06k

X2

04F

0.2p

T P T T

T T

0.0 L], | 1
0.0 0.2 0.4 0.6 0.8 1.0

X1

(a) An orthodox, grid-based discretization of a
two-dimensional domain (50X 20 grid)
1.0 = - ;

0.8
0.6

0.4

(¢) 1000 pseudo-random numbers generated using
Halton’s algorithm in two dimensions

433

random numbers, they can be generated algorithmically,
which is preferable for generating repeatable node distri-
butions. Second, since they are generated algorithmically,
deterministic performance measures can be given for algo-
rithms based on them. This is different from Monte Carlo
methods, for which only stochastic (average) performance
measures can be described.

There exists a slew of algorithms to generate sequences
of quasirandom numbers, e.g., Halton’s algorithm, Fauvre’s
method, Sobol sequence, etc. In this work, Halton’s se-
quence is used. For details about this popular algorithm, the
interested reader is directed to Niederreiter [11]. Figs. 1 (c)
and (d) show Halton pseudorandom samples in two- and
three-dimensional spaces.
1.0 -

08 R
0.6 F
o

0.4

0.2

X1

(b) Discretization with purely random numbers
drawn from a uniform distribution

(d) 1000 pseudo-random numbers generated using
Halton’s algorithm in three dimensions

Fig. 1 Various methods of domain discretization.

To implement (Q-learning, it is required to determine
neighbors for each node in the domain. The actions, A (s),
for the @-learning agent are defined by movement from
a node to one of its neighboring nodes. Determining the
neighbors can be done in several ways. The simple tech-
niques used in this work for determining neighbors are the
following:

Nearest directional neighbors An educated search in-
volves looking for neighbors along each dimension of the
domain. As in rectangular grid arrangements, some neigh-
bors may not exist (for example, in a two-dimensional grid,
there is no node to the ‘right’ of a corner node with coor-
dinates (Zmax, -)). In the current work, the following cri-
teria was used to extract directional neighbors: for a node
x; € RN, node z; € RY is its neighbor to the ‘right’ in

dimension k if:
vk >0,

ij =

ko - k(..k
Vi = f;l;?{”iﬂviq > 0},

2
’Uk =

ij — max

n
n:l,...,N|’Uij|'

In the above equation, Ufj represents the kth compo-
nent of the displacement vector between nodes ¢ and j, i.e.,
v;; = v; — v;. Therefore, the first condition in equation
(2) ensures that the node x; lies to the ‘right’ of node x;
in dimension k. The second condition ensures that node x;
is closest to node x; among all nodes lying to the right of
x; along dimension k. Note that only the kth component
(and not the Euclidean distance) is considered to measure
closeness. Finally, the third condition ensures that the kth

434

component of the displacement vector v;; has the greatest
magnitude among components of v;;. This final condition
introduces the element of direction in the search and ensures
that the neighbor x; is indeed ‘along the dimension %’. All
three conditions enforced together result in the closest node
to the right of x; along dimension k. Along similar lines,
the left neighbor of node x; along dimension k is node x; if

vk <0,
k __ k k

Vi = rggg({vquiq < 0}, 3)
k __

vii = Iax vl

Fig. 2 illustrates directional neighbors for a node distri-
bution. Note that according to the first condition alone in
equation (2), node 1 could be identified as both xgy and
Yright- However, conditions 2 and 3 identify it as a node ‘in
the z direction’ as opposed to a node in the y direction, and
hence its label.

sFT. i . .

X2
o
T

5
.
.
.
.
1

Fig. 2 Determining directional neighbors based on equations (2) and (3)
in staggered node distributions.

4 Multiresolution state-space discretization
(AAG) for pseudorandom discretization

This method was first developed for a uniform discretiza-
tion and is described in detail in [6]. Here, it is extended
to the pseudorandom grid described in the previous sec-
tion. Discretizing a state-space for learning is beneficial in
that it creates a finite number of state-action pairs the agent
must visit. Discretizing using a pseudorandom grid is bene-
ficial in that it further breaks the curse of dimensionality.
Generally, as the number of state-action pairs decreases,
the rate of convergence increases [8]. However, fewer state-
action pairs capture less detail of the environment. As noted
in passing in Section 3, the agent moves from node to
neighboring node, and that movement to either a directional
neighbor or to a nearest Euclidean distance neighbor com-
prises the actions of the agent. It is entirely possible that
the goal the agent is seeking, or any other region of interest,
does not lie on a node. This necessitates adding a range to
the goal that encompasses one or more of the nodes in the
state-space. These nodes within the goal range are pseudo-
goals (Fig. 3 (a)).

As the agent explores the coarsely discretized state-space
and garners rewards, it also notes the location of the pseudo-
goals. Once learning on the current discretization has con-
verged, the area surrounding and encompassing the pseu-

A. LAMPTON et al. /J Control Theory Appl 2011 9 (3) 431-439

dogoals is rediscretized to a finer resolution using Halton’s
sequence to generate a pseudorandom grid in the region
of interest, and the new neighbors are determined. A new,
smaller range is defined for the goal and learning begins
anew in the smaller state-space. Fig. 3 (b) shows the redis-
cretization of the state-space in two dimensions, although
this method is extensible to /N-dimensions.

5 A T 5
. .. B . el P.scudogoa'ls
}r(i ok = ; L L S * N
.. . @Y .
* Goa regién ' .
-5 B ' g
=5 0 5

X2
=
T
.

.

=5 : e TP .
=5 0 5,
X1

(b) Phase 2: finer grid, smaller goal range

Fig. 3 Multiresolution state-space discretization.
Currently, the number of nodes in each level of discretiza-
tion is preset by the user before learning commences and
is another parameter that must be tuned to ensure that the
learning converges. The total number of nodes is therefore
simply

“4)

M
Nyy = > vy,
j=1

where Ny, is the total number of nodes or vertices in N-
dimensions, j is the resolution of the discretization in which
1 is the coarsest or first level, M is the finest or last level,
and v; is the number of nodes for the jth level of discretiza-
tion. This leads to

M

N, N = Z 2N Vj

j=1

state-action pairs if neighbors are defined by direction.
This method reduces a learning problem to a series of

smaller learning problems with relatively few state-action
pairs, on the order of several orders of less magnitude.
Rather than one large problem that will take a great deal
of time to converge, there are several quickly converging
smaller problems with pseudorandom discretization.

®)

A. LAMPTON et al. /J Control Theory Appl 2011 9 (3) 431-439

5 Policy comparison

The multiresolution discretization method provides a
means of learning the action-value function, Q™ (s, a), for
a fixed policy, 7, in progressively finer detail. Rather than
blindly allowing the agent to learn for the entire number of
user defined episodes, stopping criteria based on the learned
policy are introduced.

In @Q-learning, all of the information is stored in the form
of the action-value matrix, often in the form of a table. The
learned greedy policy itself is not represented explicitly or
with any sort of model. However, the policy and associated
value function can be easily extracted from the action-value
function in a few simple steps. There exists a simple rela-
tionship between the action-value function and the greedy
policy, namely,

7 (s) = arg max Q (s,a),

(6)

where 7 (s) is the action associated with the maximum pref-
erence over the set of actions for the state.

In addition, a representation of the value function can
then be easily calculated:

V(s) = maxQ (s,a) ™

for the tabular action-value function. This relationship will
be used for visual analysis in later sections.

Two stopping criteria are added to the (Q-learning algo-
rithm and form the third and final addition that makes up
the new overall algorithm developed here. These two cri-
teria are a direct policy comparison and a performance-
based policy comparison, which are periodically applied to
the learned action-value function to determine if the action-
value function has converged to a usable data set, where a
usable data set refers to an action-value function that en-
ables the agent to successfully navigate from any initial state
to a goal state. Both criteria use the relationships in equation
(6) for the tabular action-value function. Both stopping cri-
teria introduced in this section must be met for learning at
the current level of discretization to be terminated, other-
wise learning continues. These criteria are described in the
following sections.

5.1 Direct policy comparison

The direct policy comparison stopping criterion is a sim-
ple and expedient way to track the change in the policy
extracted from an action-value function as that function
evolves during learning. This policy comparison is carried
out in a short series of steps:

1) Pause learning after n episodes.

2) Extract current greedy policy, 7; (s), from action-value
function, where ¢ is the number of elapsed episodes divided
by n.

3) Directly compare 7; (s) and m;_1 (s).

4) If change in policy, AT, is < ¢, then stopping criterion
#1 is achieved.

Here, € is a small number and is usually set as 5% for this
research, and A is essentially the fraction of states that are
different between 7; and ;1. Also, after learning is initial-
ized and the first set of n episodes elapse, the policy, 71 (s),
is extracted and stored only if there is no g (s). This com-
parison method is fully utilized starting after the second set

435

of n elapsed episodes.

It is entirely possible that a lack of change in the extracted
policy is not an indication that the action-value function has
converged to a usable function. It could simply be a momen-
tary aberration and would begin to change again if another
n episodes is allowed. To prevent this from occurring, a sec-
ond stopping criterion is introduced.

5.2 Performance-based policy comparison — Monte
Carlo simulation

The second stopping criterion implemented is based on
the performance of the current policy. During the pause in
learning after every n episodes, the policy comparison is
conducted and then this performance-based policy compar-
ison. The performance-based policy comparison measures
performance by conducting a set of Monte Carlo simula-
tions. It is referred to as Monte Carlo in the sense that ini-
tial conditions are taken from a uniform distribution and a
large number of simulations are conducted and recorded. In
each simulation, the agent is initialized in a random nongoal
state within the region of the current level of discretization.
It then uses the current learned greedy policy, meaning it ex-
ploits its current knowledge of the state-space, to navigate
through the state-space to find the goal. A success occurs
when the agent navigates from the random initial state to
a goal state without encountering a boundary. A failure oc-
curs when the agent either encounters the outermost bound-
ary of the state-space, the boundary of the current level of
discretization, or gets ‘lost’ and wanders around the state-
space, which is identified when the maximum number of al-
lowed actions is reached without encountering a goal state.
This simulation is conducted a predefined number of times,
usually 500 simulations in this research, and each success
is recorded. The success percentage is then calculated using
equation (8).

of Successes g
Total # of Simulations’ ®)
When this success percentage is above some threshold, usu-
ally 98% in this research, the second stopping criterion is
satisfied. Both first and second stopping criteria must be
met for the learning at the current level of discretization to
be terminated and learning continued at a finer level of dis-
cretization as necessary.

% Success =

6 Simple reconfigurable system example —
morphing airfoil

When considering a reconfigurable air vehicle, the com-
plexity of the reconfiguration can range from changing a
few parameters, such as wing dihedral, wing sweep, wing
span, the airfoil itself, etc., to a fully articulated wing, body,
and tail much like a bird’s. Aircraft are usually designed
for very specific purposes. Many current approaches in-
volve optimizing the vehicle shape for several flight phases,
applying an optimal control technique of one form or an-
other, and determining an actuation scheme to enable the
shape change. Some of the problems that arise with this ap-
proach are that there are only a handful of optimal shapes
and the optimized controller is specific to the initial and fi-
nal shapes. Should the optimal configuration be redesigned,
that would require that the shape change controller be re-

436

designed as well. Machine learning and in particular the al-
gorithm developed in Section 4 of this paper is a candidate
approach to avoid these problems.

The first application of this algorithm to a reconfigurable
system is a simple airfoil as seen in Fig. 4. Rather than find-
ing a couple optimal shapes that meet some criteria and a
separate optimal controller to maneuver from one shape to
the other, the airfoil is cast as a reinforcement learning prob-
lem in which the full spectrum of shapes that meet the flight
phase criteria are learned as well as the local transitions that
guide the shape from any initial shape to a shape that meets
the requirements.

— Airfoil
===+« Camber line
-=-- Chord line

Thickness

Location of —=
maximum camber

V

Fig. 4 Representative airfoil.

Section 6.1 discusses the airfoil model to be cast as the
environment of the reinforcement learning problem. Then,
the full reconfigurable airfoil reinforcement learning prob-
lem is described followed by analysis of the algorithm de-
scribed above when applied to reconfigurable airfoil rein-
forcement learning problem.

6.1 Airfoil model

The airfoil is modeled by a computational fluid dynamics
(CFD) code using a constant strength doublet panel method.
This model calculates the aerodynamic properties of an
airfoil given a set of four inputs: airfoil thickness, airfoil
camber, location of maximum camber, and airfoil angle-of-
attack. Setting these four parameters as inputs to the model
allow for quick calculation of the aerodynamic properties of
many different airfoils or as a single airfoil changes shape.
The full development, validation, and verification of this
model can be found in [7].

6.2 Airfoil cast as a reinforcement learning problem

In the case of the airfoil, there are no dynamics involved
in the shape change at this point in the problem develop-
ment. Thus, each commanded change in airfoil shape yields
an immediate response. This formulation allows for better
focus on the actual choice in shape.

The state variables are chosen such that the aerodynamic
properties of the airfoil are adequately exploited. The CFD
model itself constitutes the environment with which the
agent interacts. Thus, there are four possible interdependent
parameters, consisting of the four inputs to the CFD model,
which constitute the state of the agent within the environ-
ment. The reinforcement learning problem can be cast such
that any combination of the four parameters forms the state,
while the others are just held constant in the background.

The agent interacts with its environment by choosing ac-
tions from a set of admissible actions. The state-space is
discretized in the manner described in Section 3, so these

A. LAMPTON et al. /J Control Theory Appl 2011 9 (3) 431-439

actions include incremental changes in the shape parame-
ters of the airfoil defined by the neighboring nodes. Thus,
the agent is effectively restricted to movement between ad-
jacent nodes. An example of admissible action in this con-
text is the following. The agent chooses to move in the z;-
dimension from node x; in the two-dimensional problem.
The two possible actions in the x1-dimension are defined as
follows:

€))

where Ay is the action from the current node to the node to
the left along the x;-dimension, and A,; is the action from
the current node to the node to the right. The definitions of
the z; axes are defined in Table 1.

Table 1 Morphing airfoil axis definitions.

{All =x; — 1],

Alj =X, — Ty,

Ti Definition

x1 Thickness/%
) Camber/%

The goal, g, of the agent for this problem is defined by
the aerodynamics of the airfoil. Every goal has a range,
gr, associated with it. The numerical example presented
here has a goal defined by the airfoil lift coefficient, ¢;.
Those nodes whose state yield aerodynamic coefficients, c,
from the CFD model that lie in the goal range defined by
g — gr < ¢ < g+ g, form the pseudogoals of the problem.

The reward structure for this problem is the function de-
fined by equation (10). The limits that define the bounds of
the state-space are listed in Table 2.

r=lg—cnal—lg—cnl, (10)
where r is the reward, g is the goal, and c is the metric or
aerodynamic coefficient.

Table 2 Morphing airfoil parameter limits.

Limit Lower Upper
Thickness/(% chord) 10 18
Camber/(% chord) 0 5

7 Numerical example

The purpose of the numerical example is to demonstrate
the learning performance of the (J-learning with a pseu-
dorandom state-space discretization when integrated with
the aerodynamic model. The agent follows a 100% explo-
ration policy for this example. The agent is to learn the
action-value function with multiple levels of discretization
in which the discretization is a randomized grid and using
the stopping criteria. The number of nodes in each finer dis-
cretization is preset for the problem. The number of levels
of discretization or resolution as defined earlier is M. The
parameters for this problem are listed in Table 3.

For each of the 5000 episodes, the agent begins in a ran-
dom initial state that is not classified as a goal state. It ex-
plores the state-space of thickness-camber combinations un-
til it hits the predefined limit of total number of actions or
finds a goal state. Should the agent run into a boundary, that
boundary location is noted, and the agent chooses another
action. The actions for the example are defined by the four

A. LAMPTON et al. /J Control Theory Appl 2011 9 (3) 431-439

directional neighbors determined using equations (2) and
3.

During learning, knowledge of the action-value function
is carried over between discretizations and the reward struc-
ture defined by equation (10) is used. When learning is
paused, the action-value function is evaluated using the pol-
icy comparison stopping criteria developed in Section 5.
The learning is analyzed by evaluating the Monte Carlo sim-
ulation performance results and the final value function and
associated greedy policy.

Table 3 Airfoil parameters and constants.

437

gion is rediscretized and the action-values are interpolated,
this is not taken into account because the agent is not aware
of this detail. The resulting policy after interpolation reflects
what was learned at the second level of discretization and
must be modified by additional learning to take into account
the goal in relation to the states. This results in a drop in
success rate until the interpolated action-values for the new
states are directly reinforced by the agent for the new dis-
cretization.
100

95

90

Success / %

85

80

75

70

0

500 1000 1500 2000 2500 3000
Episodes

Parameter Value
gr 0.20
M 3
Goal g a=0.3
Initial range g, 0.025
@ 0.01
y 0.7
Chord 1m
Angle-of-attack 2.0°
Episodes 5000

Number of nodes [v1 vz wv3] = [181 359 2003]

7.1

Fig. 5 shows the results of the Monte Carlo simulation
performance analysis and the final distribution of states for
this problem. Each level of discretization is again allowed
a possible 5000 episodes. The final range for the goal in
this problem is 0.001. Learning on each level of discretiza-
tion for this case is terminated when there is less than 5%
change in the policy extracted from the action-value func-
tion in equation (6) and the policy performance analysis
yields >98% success.

The figure shows that the first discretization reaches
>98% within 200 episodes, and the learning is terminated
after 800 episodes. The agent still has learning to do after
the first 200 episodes because the direct policy compari-
son stopping criterion has not yet been met. The second
discretization converges, reaches >98% success, and ter-
minates learning within 800 episodes. The third discretiza-
tion reaches >98% success within 1400 episodes. Based
on these learned data, only 3000 episodes were needed of
the 15000 allowed episodes for learning to converge using
the pseudorandom grid, which is an 80% reduction. Also,
Fig. 5 (b) shows the concentration of nodes near 2.4% cam-
ber. Discretizing the entire domain to the density in this area
would result in a pseudorandom grid with over 19000 nodes.
The 2543 nodes in this figure is a 86.7% reduction.

The reason why there is such a sharp decline in success
at the start of the third level of discretization is that the pol-
icy in the region of interest is learned for the second-level
discretization. When the region is rediscretized with a pseu-
dorandom grid the final region, the action-values for the new
states are interpolated from the previous discretization. For
this example, the goal of ¢; = 0.3 lies between vertices of
the second-level discretization, although it does not directly
bisect the distance between adjacent vertices. When the re-

Monte Carlo simulation

(a) Monte Carlo simulation results
5.0~ SR

Camber / %

10 ’ 14 18
Thickness / %
(b) State distribution

Fig. 5 Final simulation results of learned knowledge of airfoil.
7.2 Value function and policy analysis

The following figure shows the greedy policy and value
function based on the final action-value function and are de-
termined using equations (6) and (7), respectively. The ac-
tions for the policy are color coded for visual clarity and are
defined by the angle between the z;-axis and the line made
by the current state, s, and the subsequent state, s’, which
occurs given the greedy action.

Fig. 6 illustrates the value function and greedy policy
based on the final action-value function. The sudden in-
crease in value function as the camber approaches 2.4% is a
result of learning on the second level of discretization. No-
tice the function appears more refined in this region. The
ridge in the middle of the function is effectively the goal of
c; = 0.3 and where the reward function approaches 0. This
ridge is reflected in the graphic of the greedy policy. This
figure shows that change in camber has the greatest influ-
ence on airfoil lift coefficient. The vagaries in the directions
indicated by the color distribution in Fig. 6 (b) is a result of
the pseudorandom grid and how the directional neighbors
are determined. This figure and the other analyses show that
this approach is successful and is a good next step for AAG.

438

Value

5 :‘%

2.5 — < \A " ofo
=
Campe, , o 1\\'@\5‘6
(a) Value function
- mirad
=
E %f’rad
£
=
& O/rad
L) | T
‘ LI) /rad
0.0 ‘
14

10 18

Thickness / %
(b) Greedy policy

Fig. 6 Representation of learned knowledge of airfoil.

8 Conclusions

The results show that the learning for the multiresolu-
tion method with pseudorandom gridding reaches a 98%
success rate or greater within 200 episodes for the coars-
est discretization and within 1400 episodes for the finest
discretization. Conceptually, a problem with the full state-
space discretized at the finest level would take many thou-
sands or tens of thousands of episodes more to reach this
level of convergence. This method is successful in greatly
reducing the time for convergence, increasing the rate of
convergence, and achieving a goal with the very small range
of 0.001 with less than 3000 states. This method essen-
tially reduced the larger problem by almost 90%, making
it a much more computationally tractable learning problem.
Additionally, the value function and policy show that learn-
ing for the example considered, the lift coefficient is domi-
nated by the camber.

Acknowledgements

This material is based upon work supported in part by
the U.S. Air Force Office of Scientific Research under con-
tract FA9550-08-1-0038, under technical monitor Dr. Fariba
FAHROO, and by the National Science Foundation under
a Graduate Research Fellowship. This support is gratefully
acknowledged by the authors. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the U.S. Air Force or the National Science Foun-
dation.

A. LAMPTON et al. /J Control Theory Appl 2011 9 (3) 431-439

References

[1] D. C. Bentivegna, C. G. Atkeson, G. Cheng. Learning to select
primitives and generate sub-goals from practice. Proceedings of
the IEEE/IRSJ International Conference on Intelligent Robots and
Systems, New York: IEEE, 2003: 946 — 953.

[2] O. Simsek, A. PWolfe, A. G. Barto. Identifying useful subgoals in
reinforcement learning by local graph partitioning. Proceedings of
the 22nd International Conference on Machine Learning, New York:
ACM, 2005: 816 — 823.

[3] C. Clausen, H. Wechsler. Quad-Q-learning. IEEE Transactions on
Neural Networks, 2000, 11(2): 279 — 294.

[4] T. G. Dietterich. The MAXQ method for hierarchical reinforcement
learning. Proceedings of the 15th International Conference on
Machine Learning, San Francisco, CA: Morgan Kaufmann Publishers
Inc., 1998: 118 — 126.

[5] C.J.C.H. Watkins, P. Dayan. Learning from Delayed Rewards. Ph.D.
thesis. Cambridge, U.K.: University of Cambridge, 1989.

[6] A. Lampton. Function Approximation and Discretization Methods
for Reinforcement Learning of Highly Reconfigurable Vehicles. Ph.D.
thesis. College Station, TX: Texas A&M University, 2009.

[71 A. Lampton, A. Niksch, J. Valasek. Reinforcement learning of
morphing airfoils with aerodynamic and structural effects. Journal of
Aerospace Computing, Information, and Communication, 2009, 6(1):
30 - 50.

[8] A. Lampton, A. Niksch, J. Valasek. Reinforcement learning of a
morphing airfoil-policy and discrete learning analysis. Proceedings of
the AIAA Guidance, Navigation, and Control Conference, Honolulu,
HI, 2008: No.AIAA-2008-7281.

[9] A. Lampton, A. Niksch, J. Valasek. Morphing airfoil with
reinforcement learning of four shape changing parameters. Pro-
ceedings of the AIAA Guidance, Navigation, and Control Conference,
Honolulu, HI, 2008: No. AIAA-2008-7282.

[10] R. Sutton, A. Barto. Reinforcement Learning — An Introduction.
Cambridge: MIT Press, 1998.

[11] H. Niederreiter. Random Number Generation and Quasi-Monte Carlo
Methods. Philadelphia: SIAM, 1992.

Amanda LAMPTON joined Systems Technology,
Inc. in June, 2010. Her main areas of interest are
flight mechanics and control, intelligent control,
and autonomous systems. As a graduate student,
she studied utilizing learning algorithms to solve
the shape control problem of a reconfigurable or
morphing air vehicle cast as a reinforcement learn-
ing problem. The majority of this work was funded
by a National Science Foundation Graduate Re-
search Fellowship. She developed the methodology to the point that fund-
ing was secured from the Air Force Office of Scientific Research (AFOSR)
for further development. She served as student technical lead on this project
for the remainder of her graduate career and her post-doctoral research. Dr.
Lampton has extensive experience in designing flight controllers for a myr-
iad of problems including the morphing aircraft problem, aerial refueling
tasks, and high performance aircraft regulators and autopilot tasks using a
variety of techniques. Amanda serves on both the AIAA Guidance, Nav-
igation, and Control Technical Committee and the AIAA Intelligent Sys-
tems Technical Committee. She earned her B.S., M.S., and Ph.D. degrees
in Aerospace Engineering at Texas A&M University in 2004, 2006, and
2009, respectively. She is a member of the American Institute of Aeronau-
tics and Astronautics (AIAA) and the Institute of Electrical and Electronics
Engineers (IEEE).

John VALASEK is Director, Vehicle Systems &
Control Laboratory and Professor of Aerospace En-
gineering at Texas A&M University. His research
focuses on bridging the gap between computer sci-
ence and aerospace engineering, encompassing ma-
chine learning and multiagent systems, intelligent
autonomous control, vision-based navigation sys-
tems, fault tolerant adaptive control, and cockpit
systems and displays. John was previously a flight

A. LAMPTON et al. /J Control Theory Appl 2011 9 (3) 431-439

control engineer for the Northrop Corporation, Aircraft Division where
he worked in the Flight Controls Research Group, and on the AGM-137
Tri-Services Standoff Attack Missile (TSSAM) program. He was also a
summer faculty researcher at NASA Langley in 1996 and an AFOSR sum-
mer faculty research fellow in the Air Vehicles Directorate, Air Force Re-
search Laboratory in 1997. John has served as Chair of Committee to 32
completed graduate degrees, and his students have won national and re-
gional student research competitions in topics ranging from aircraft design
to smart materials to computational intelligence. John is an associate editor
of the Journal of Guidance, Control, and Dynamics, and current member of
the AIAA Guidance, Navigation, and Control Technical Committee; AIAA
Intelligent Systems Technical Committee; and the IEEE Technical Com-
mittee on Intelligent Learning in Control Systems. John earned his B.S.
degree in Aerospace Engineering from California State Polytechnic Uni-

439

versity, Pomona in 1986, M.S. degree with honors, and Ph.D. in Aerospace
Engineering from the University of Kansas, in 1990 and 1995, respectively.
He is an Associate Fellow of AIAA and a Senior Member of IEEE.

Mrinal KUMAR received his B.Tech. degree from
Indian Institute of Technology, Kanpur in 2004, and
Ph.D. from Texas A&M University in 2009, both in
Aerospace Engineering. He is currently a member
of the faculty as an assistant professor in the De-
partment of Mechanical and Aerospace Engineer-
ing at University of Florida, Gainesville. His cur-
rent research interests include uncertainty quantifi-
cation using spectral methods and design of ran-
domized algorithms for large scale engineering problems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

