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Casting the problem of morphing a microair vehicle as a reinforcement-learning problem
to achieve desired tasks or performance is a candidate approach for handling many of the
unique challenges associated with such small aircraft. This paper presents an early stage
in the development of learning how and when to morph a micro air vehicle by develop-
ing an episodic unsupervised learning algorithm using the Q-learning method to learn the
shape and shape change policy of a single morphing airfoil. Reinforcement is addressed by
reward functions based on airfoil properties, such as lift coefficient, representing desired
performance for specified flight conditions. The reinforcement learning as it is applied to
morphing is integrated with a computational model of an airfoil. The methodology is demon-
strated with numerical examples of an NACA type airfoil that autonomously morphs in two
degrees of freedom, thickness and camber, to a shape that corresponds to specified goal
requirements. Because of the continuous nature of the thickness and camber of the airfoil,
this paper addresses the convergence of the learning algorithm given several discretizations.
Convergence is also analyzed with three candidate policies: 1) a fully random exploration
policy, 2) a policy annealing from random exploration to exploitation, and 3) an annealing
discount factor in addition to the annealing policy. The results presented in this paper show
the inherent differences in the learned action-value function when the state-space discretiza-
tion, policy, and learning parameters differ. It was found that a policy annealing from fully
explorative to almost fully exploitative yielded the highest rate of convergence as compared to
the other policies. Also, the coarsest discretization of the state-space resulted in convergence
of the action-value function in as little as 200 episodes.

Nomenclature
A plane of the airfoil
A(st ) set of actions available in state st

a action
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h distance between vertices
L length
N number of state-action pairs
NV number of vertices
P probability
Qπ(s, a) action-value function for policy π

R reward
r discount rate
rt reward at time t
S set of possible states for reinforcement learning
s state
V π(s) state value function for policy π

X vertex
x axis

Greek
α learning rate
γ discount factor
ε greedy policy parameter
π policy

Subscript
i index
j index
t time
1 axis index
2 axis index

Superscript
I index
J index
∗ optimal

I. Introduction

INTERACTING with our environment is one of the fundamental ways in which we learn. With no explicit teacher
and only sensory inputs, we can learn much information about cause and effect. We seek to learn and understand

how the environment responds to our actions. Reinforcement learning, a machine-learning method, is a computational
approach to learning from interaction. The reinforcement-learning problem seeks to learn what to do so as to maximize
the numerical reward. Reinforcement learning, in effect, learns how to map situations, or states, to actions. The learner
or agent does this by exploring its environment and discovering which actions yield the most reward.

The goal of an algorithm used to solve a reinforcement-learning problem is to converge to a usable policy that will
tell the agent how to transition about the state-space to the goal. Problems that arise often involve how the problem
in question is cast as a reinforcement-learning problem, i.e., what are the states, actions, and goal, and the tuning of
learning parameters, such as discretization, policy followed, and discount factor, which is the focus of this paper for
the morphing vehicle problem.

Discretizing the state and action spaces is a common way to cast a continuous state and action space problem as a
reinforcement-learning problem. A simple learning problem can be easily discretized into a relatively small number
of states. The learned value or action-value function is generally a good representation of the agent’s knowledge of the
environment. A problem becomes more complex as the number of state variables needed to represent the environment
increases. The number of states in the action-value function depends on how a problem is discretized. There is a trade
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off, however. If the agent can only store knowledge in a small number of states, important details of the environment
may be lost. If the agent can store knowledge in a very large number of states, details of the environment are captured
quite well. The caveat is that the rate of convergence drops drastically as the number of states increases. Examples
of state-space discretization are given in [1], which describes a space robot problem in which the orientation and the
action set of the spacecraft has been discretized to facilitate learning [2], which describes quad-Q-learning in which
a state-space is discretized and then sampled in a “divide and conquer” technique. Many other such examples exist,
but few present a detailed analysis of the convergence properties of levels of discretization on the particular problem
in question.

The policy followed by the agent is also an important aspect of any learning problem. Many unique solutions exist
to handle the exploration/exploitation policy dilemma of both discrete and continuous reinforcement-learning prob-
lems. One such solution is to integrate the Metropolis Criterion into Q-learning, which eliminates some exploration
blindness [3,4]. A greedy exploration policy based on the state balance criterion can also be used [5]. Exploration and
exploitation can also be decoupled to cope up with any instabilities in the Q-learning algorithm [6]. An exploration
algorithm that considers “prediction accuracy requirements” during exploration has been applied to a robot juggling
Q-learning problem [7]. A Q-learning agent can also be restricted to explore only those options that are likely to avoid
any unnecessary risk, which allows the algorithm to balance competing objectives and find satisficing solutions [8].
Many of these methods show good convergence properties and could be considered as candidate policies.

Reinforcement learning has also been applied to the problem of air vehicle morphing for mission adaptation.
Valasek et al. [9] describe a methodology that combines structured adaptive model inversion with reinforcement
learning to address the optimal shape change of an entire vehicle. The method learns the commands for two inde-
pendent morphing parameters that produce the optimal shape. The authors show that the methodology is capable of
learning the required shape and changing into it and accurately tracking some reference trajectory [9]. This method-
ology is further developed in [10]. It is extended to an “air vehicle” using Q-learning to learn the optimal shape
change policy. The authors show that the methodology is able to handle a hypothetical 3-D smart aircraft that has two
independent morphing parameters, tracking a specified trajectory, and autonomously morphing over a set of shapes
corresponding to flight conditions along the trajectory [10]. Finally, the methodology is further improved upon by
applying sequential function approximation to generalize the learning from previously experienced quantized states
and actions to the continuous state-action space [11]. The authors showed that the approximation scheme resulted in
marked improvements in the learning as opposed to the previously employed K-nearest neighbor approach. All of
these examples, however, have only two independent degrees-of-freedom that must be learned and are in fact treated
as separate learning problems each with only one degree-of-freedom to be learned. Learning to manipulate more
morphing parameters that are interdependent and cannot be separated into independent problems creates a more
complex problem. The increased dimensionality and inherent convergence issues become a concern.

Biologically inspired morphing is of great interest in the realm of micro air vehicles (MAVs). Because of their
small size and membrane-lifting surfaces, they often do not have conventional control surfaces, especially on the
wing. Thus, other means of control must be investigated. Some learning methods have been applied to optimize
control techniques for MAVs. Flight tests show that wing twist and/or curl provide an excellent strategy to command
roll maneuvers [12,13]. The torque rods used to achieve wing twist are optimized in [14], using genetic algorithms in
which a vortex lattice method is used to determine fitness. However, the genetic algorithms are used to determine the
placement of the torque rods to achieve the most efficient morphing of the wing rather than how to morph the wing
to achieve the desired effects. Traditional control and optimization techniques and human pilots are still necessary
to control the shape change of the aircraft.

The problem of a morphing airfoil was investigated by Hubbard [15]. The focus is on the physical shape change of
an airfoil modeled by a space/time transform parameterization. The space/time parameterization results in a spatially
decoupled system with Fourier coefficients as inputs and orthogonal basis shapes as outputs [15]. This is a novel
concept for the actuation of an airfoil’s shape. However, it requires that the final desired shape be specified and the
design of controllers to send commands to the actuators.

This paper extends and analyzes the basic architecture developed in [16] in which the morphing airfoil is first cast
as a simple reinforcement-learning problem and various aerodynamic goals are learned. Considering a computational
model of an airfoil that calculates the aerodynamic and structural properties as the airfoil changes shape, reinforcement
learning is used to learn the commands that produce the optimal shape based on lift, drag, and moment, all of which
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are dependent on flight condition. Every learning problem is different, and the method applied must be tailored to
that problem. The discretization of the state-space must be tuned such that good convergence is achieved while still
capturing the important features of the state-space. The policy and learning parameters must also be chosen such that
the action-value function converges to a near optimal solution.

The contribution of this paper is to further examine the learning problem of the morphing airfoil in detail by
changing various learning parameters, such as the discretization, policy, and discount rate, while keeping the goal
the agent is to learn constant. Casting the morphing problem as a reinforcement-learning problem allows a greater
versatility than other methods. The shape needed to meet some performance standard for a flight phase and the path
the shape parameters are to follow from some initial shape to that final shape is learned together. Previous morphing
vehicle work involves designing a set of configurations for several flight phases and then designing a controller to
transition from one shape to another. Problems can arise with this method if the designed shapes are not achieved
and the difference is significant enough that the designed controllers no longer perform satisfactorily.

As a reinforcement-learning problem, a control policy can be learned by designing the problem such that a shape
must be achieved that meets the requirements from anywhere in the conceivable shape state-space. In addition, the
vehicle can continue to learn on-line so that as conditions change or as the vehicle parameters themselves change,
the policy can learn and adapt to continue to perform well. Only the goal, constraints, and learning parameters
must be set to produce such a control policy. This is especially helpful for MAVs in which design and control is a
challenge due to such issues as unsteady aerodynamics. The learned control policy will inherently account for that
as it is learned. The analysis described in this paper is one more step toward this overall goal. The tuning of learning
parameters is necessary to achieve convergence to a usable policy. It is necessary to understand the effects of these
parameters for a small, though still complex morphing problem, before tackling a morphing air vehicle problem with
a greater number of shape-changing parameters. When this methodology is fully developed, it can act as a wrapper for
simulated or hardware vehicles, such as a morphing MAV or Hubbard’s airfoil. Through reinforcement learning, the
vehicle will learn what shapes it needs to achieve to meet some goal and the control policy that will give commands
to the actuators to transition from any shape to the desired shape. This analysis identifies which arrangement is most
conducive to good convergence properties for the morphing airfoil reinforcement-learning problem.

This paper is organized as follows. Section II describes the mechanics of reinforcement learning and how it
is implemented in Q-learning in particular. Reinforcement learning learns the optimality relations between the
aerodynamic requirements and the shape. The airfoil can then be subjected to a series of aerodynamics requirements
and use the relations learned to choose a good shape for the current set of requirements. The method used to discretize
a continuous learning domain is developed. Section III develops the airfoil model used by the reinforcement-learning
agent. This section describes the methodology used to calculate the aerodynamic and structural properties of the
airfoil. Flexibility is allowed in the sense that thickness, camber, location of maximum camber, and angle-of-attack all
have the potential of being commanded and used to determine the optimal configuration. Section IV describes how the
airfoil model and the reinforcement-learning agent are tied together to form a morphing airfoil. Section V describes
how the testing simulations are conducted once learning is completed. Section VI takes the fully developed morphing
airfoil and interprets numerical examples generated from it. The numerical examples show the airfoil autonomously
morphing into optimal shapes corresponding to specified aerodynamic requirements. Finally, conclusions are drawn
from the numerical examples in Sec. VII.

II. Reinforcement Learning
Reinforcement learning is learning through interaction with the environment to achieve a goal. More specifically

it is learning to map situations to actions to maximize some numerical reward. The learner or decision-maker is the
agent and does not know what actions to take a priori as is common in most forms of machine learning. Everything
outside of the agent comprises the environment. The agent’s task is to learn a policy or control strategy for choosing
actions that achieves its goals. To learn the correct policy, which is a state to action mapping, π : S → A, the agent
receives a reward, or reinforcement, from the environment [17].

The agent and environment interact continually is a series of discrete time steps, t = 0, 1, 2, 3, . . . . At each time
step t , a series of events occur. The agent first receives some representation of the environment’s state, st ∈ S, where
S is the set of all possible states. Based on the state, the agent chooses an action, at ∈ A(s), where A(s) is the set of
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actions available to the agent in state st . At the next time step, the agent receives a numerical reward, rt+1 ∈ �, and
is in a new state, st+1.

As the agent moves from state-to-state selecting actions and receiving rewards, it generates a mapping, as stated
earlier, of states to probabilities of selecting each possible action. This policy, πt(s, a), is the probability that at = a

at st = s [17].
The agent seeks to maximize the reward it receives, or more formally, its expected return, Rt . The simplest form

of Rt is the sum of the rewards received after time t as shown in the following equation:

Rt = rt+1 + rt+2 + rt+3 + · · · + rT (1)

where T is the final time step, assuming there is a final step. This breakdown of a sequence into a finite number of
steps is called an episode. Discounted return denotes the sum of discounted rewards the agent tries to maximize,
Eq. (2)

Rt = rt+1 + γ rt+2 + γ 2rt+3 + · · · =
∞∑

k=0

γ krt+k+1 (2)

where γ is the discount rate and 0 � γ � 1. The discount rate effectively modulates the importance of future expected
rewards. If γ = 0, the agent seeks only to maximize immediate rewards. As γ approaches 1, the agent takes future
rewards into account more strongly [17].

In this research, and for many reinforcement learning problems, it is assumed that the problems can be modeled
as Markov decision processes (MDPs) and cast in the reinforcment-learning problem framework. An MDP satisfies
the following conditional probability distribution function:

Pr{st+1 = s ′, rt+1 = r|st , at , rt , st−1, at−1, rt−1, . . . , s0, a0} = Pr{st+1 = s ′, rt+1 = r|st , at } (3)

for all s1, . . . , s + t + 1 and for all integers t > 0 [18]. This means that rather than the transition to state s ′ and
receiving reward r depending on all past states, actions, and rewards, the transition to state s ′ and receiving reward
r is only dependent on st and at . A problem is considered an MDP if all the information necessary for the agent
to make a decision is incorporated in the current state. The decision is not based on any past states visited, and is
therefore path independent.

An underlying theme of almost all algorithms used to solve reinforcement-learning problems is estimating value
functions. A value function is a function of the state or of state-action pairs that estimates how good it is, in terms of
future rewards, for the agent to be in a given state [17]. The value of a state s under some policy π is denoted V π(s)

and is the expected return of starting in s and following π for all subsequent steps. This expectation is formalized in
the following equation:

V π(s) = Eπ {Rt |st = s} = Eπ

{ ∞∑
k=0

γ krt+k+1|st = s

}
(4)

A similar relationship exists for action-value functions, Qπ(s, a), which is defined as the value of taking action a in
state s under policy π . This relationship is shown in the following equation:

Qπ(s, a) = Eπ {Rt |st = s, at = a} = Eπ

{ ∞∑
k=0

γ krt+k+1|st = s, at = a

}
(5)

These can be estimated from experience and usually satisfies some recursive relationship. This relationship for the
value function is derived as given below and holds for any policy π and any state s.

V π(s) = Eπ {Rt |st = s}

= Eπ

{ ∞∑
k=0

γ krt+k+1|st = s

}
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= Eπ

{
rt+1 + γ

∞∑
k=0

γ krt+k+2|st = s

}

=
∑

a

π(s, a)
∑
s ′

Pa
ss ′

[
Ra

ss ′ + γEπ

{ ∞∑
k=0

γ krt+k+2|st+1 = s ′
}]

=
∑

a

π(s, a)
∑
s ′

Pa
ss ′ [Ra

ss ′ + γV π(s ′)] (6)

where Pa
ss ′ is the probability of transition from state s to state s ′ under action a, and Ra

ss ′ is the expected immediate
reward on transition from s to s ′ under action a. Equation (6) is referred to as the Bellman equation for V π . The
Bellman equation for Qπ is

Qπ(s, a) = Eπ {Rt |st = s, at = a}

= Eπ

{ ∞∑
k=0

γ krt+k+1|st = s, at = a

}

= Eπ

{
rt+1 + γ

∞∑
k=0

γ krt+k+2|st = s, at = a

}

=
∑
s ′

Pa
ss ′

[
Ra

ss ′ + γ
∑

a

π(s ′, a′)Eπ

{ ∞∑
k=0

γ krt+k+2|st+1 = s ′, at+1 = a′
}]

=
∑
s ′

Pa
ss ′

[
Ra

ss ′ + γ
∑

a

π(s ′, a′)Qπ(s ′, a′)

]
(7)

The next logical step is to define the optimal value function and optimal action-value function. This starts with the
assumption that there is an optimal policy, π∗, better than all the others. One policy is better than another if its
expected return is greater [17]. The optimal value function, V ∗, is thus defined as

V ∗(s) = max
π

V π(s) (8)

for all s ∈ S. Similarly, the optimal action-value function is defined as

Q∗(s, a) = max
π

Qπ(s, a) (9)

for all s ∈ S and a ∈ A(s). Here Q∗ can be written in terms of V ∗ because Eq. (9) is the expected return of taking
action a in state s and following an optimal policy for all subsequent steps

Q∗(s, a) = Eπ {rt+1 + γV ∗(st+1)|st = s, at = a} (10)

The related Bellman optimality equations are listed as follows:

V ∗(s) = max
a

∑
s ′

Pa
ss ′ [Ra

ss ′ + γV ∗(s ′)] (11)

Q∗(s, a) =
∑
s ′

Pa
ss ′

[
Ra

ss ′ + γ max
a′ Q∗(s ′, a′)

]
(12)

Ideally one would simply solve the set of linear Bellman optimality equations to acquire an optimal value function or
optimal action-value function. However, that requires that the transition probabilities, Pa

ss ′ , and expected immediate
rewards, Ra

ss ′ , be known [17]. That is often not the case, unfortunately, so other methods are often employed.
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There are a number of ways to solve for the value or action-value functions. Three basic solution methods are
dynamic programming (DP), Monte Carlo methods, and temporal-difference (TD) learning [17].

Dynamic programming refers to algorithms that computes optimal policies given a perfect model of the environ-
ment. These are often computationally expensive and depend on a perfect model. Dynamic programming algorithms
include policy evaluation, policy improvement, policy iteration, value iteration, etc. [17].

Monte Carlo methods estimate the value functions and try to find optimal policies. One advantage of these methods
over basic DP is that they require only experience and not perfect knowledge of the environment. Learning can be
conducted on-line or in simulation with no prior knowledge of environment dynamics. These methods learn based
on an episode by episode averaging of sample returns. Monte Carlo methods include Monte Carlo policy evaluation,
Monte Carlo estimation of action values, Monte Carlo control (both on-policy and off-policy), etc. [17].

Temporal-difference learning can be thought of as a combination of ideas from both DP and Monte Carlo [17].
These methods learn from raw experience without the need for a model of the environment’s dynamics. They bootstrap
in the sense that estimates are updated during an episode based on other learned estimates. Temporal-difference
learning methods include TD prediction, Sarsa, Q-learning, actor-critic methods, etc.

A. Implementation of Reinforcement-learning Agent
For the present research, the agent in the morphing airfoil problem is its RL agent. It attempts to independently

maneuver from some initial state to a final goal state characterized by the aerodynamic properties of the airfoil. To
reach this goal, it endeavors to learn, from its interaction with the environment, the optimal policy that, given the
specific aerodynamic requirements, commands the series of actions that changes the morphing airfoil’s thickness
or camber toward an optimal one. The environment is the resulting aerodynamics the airfoil is subjected to. It is
assumed that the RL agent has no prior knowledge of the relationship between actions and the thickness and camber
of the morphing airfoil. However, the RL agent does know all possible actions that can be applied. It has accurate,
real-time information of the morphing airfoil shape, the present aerodynamics, and the current reward provided by
the environment.

The RL agent uses a one-step Q-learning method, which is a common off-policy TD control algorithm. In its
simplest form, it is a modified version of the following equation and is defined by

Q(st , at ) ← Q(st , at ) + α
[
rt+1 + γ max

a
Q(st+1, a) − Q(st , at )

]
(13)

The Q-learning algorithm is illustrated as follows [17]:

Q-Learning()
• Initialize Q(s, a) arbitrarily
• Repeat (for each episode)

– Initialize s

– Repeat (for each step of the episode)
∗ Choose a from s using policy derived from Q(s, a) (e.g. ε-Greedy Policy)
∗ Take action a, observe r , s ′

∗ Q(st , at ) ← Q(st , at ) + α
[
rt+1 + γ max

a
Q(st+1, a) − Q(st , at )

]
∗ s ← s ′

– until s is terminal
• return Q(s, a)

The agent learns the greedy policy, defined as:

ε-greedy policy
if(probability > 1 − ε)

a = arg max
a

Q(s, a)

else
a = rand(ai)

(14)
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As the learning episodes increase, the learned action-value function Q(s, a) converges asymptotically to the optimal
action-value function Q∗(s, a). The method is an off-policy one as it evaluates the target policy (the greedy policy)
while following another policy. The policy used in updating Q(s, a) can be a random policy, with each action having
the same probability of being selected. The other option is an ε-greedy policy, where ε is a small value. The action
a with the maximum Q(s, a) is selected with probability 1 − ε, otherwise a random action is selected.

If the number of the states and the actions of an RL problem is a small value, its Q(s, a) can be represented
using a table, where the action-value for each state-action pair is stored in one entity of the table. Because the RL
problem for the morphing vehicle has states (the shape of the airfoil) on continuous domains, it is impossible to
enumerate the action-value for each state-action pair. In essence, there are an infinite number of state-action pairs.
One commonly used solution is to artificially quantize the states into discrete sets, thereby reducing the number of
state-action pairs the agent must visit and learn. The goal in doing this is to reduce the number of state-action pairs
while maintaining the integrity of the learned action-value function. For a given problem, experimentation must be
conducted to determine what kind of quantization is appropriate for the states.

In this paper, several increasingly larger quantizations are considered to determine what the effect of discretization.
For the problem at hand, the state of the morphing airfoil cast as a reinforcement-learning problem are the shape
parameters—thickness and camber. Studying the effects of the discretization of these state variables is an important
stepping stone for the understanding of the problem before more state variables (i.e., shape parameters) are added
in future development. The details of how the morphing airfoil problem is cast as a reinforcement-learning problem
are described in Sec. IV.

B. Learning on a 2- and N-Dimensional Continuous Domain
Q-learning on a continuous domain quickly becomes intractable when one considers that convergence of the

algorithm to the optimal action-value function is only guaranteed if the agent visits every possible state an infinite
number of times [19]. An agent would therefore visit an infinite number of states using an infinite number of actions
an infinite number of times. Add in the fact that the states can be defined by anywhere from 1 to N continuous
variables and the dimensionality of the problem becomes a significant problem.

One way to cope up with the inherent complexity of a continuous domain-learning problem is to discretize the
state-space by overlaying a pseudo-grid. The essential ideas of this concept can be best introduced in terms of a
1-dimensional problem. The notation can then be generalized for the 2- and N -dimensional problems.

For the 1-dimensional problem, the state-space can be represented by a line as seen in Fig. 1. An arbitrary set of
vertices {1X, 2X, . . . , kX, . . .} are introduced at a uniform distance h apart. Ideally, h is chosen such that a vertex
lies on both end points of the state-space. In the learning algorithm, the agent is allowed only to visit the overlaying
vertices and their corresponding states. This technique effectively reduces the state-space from infinity to a finite
number of states, thus rendering the problem more manageable.

To further simplify the problem, we restrict what actions the agent may take. When the agent is at the I th vertex
X = IX, it may only move to I−1X or I+1X. Now the problem has only two possible actions rather than an infinite
number, which further reduced the problem complexity.

Let L denote the length of the continuous domain. As per our formulation, there are

NV1 = L

h
+ 1 (15)

vertices, where NV is the number of vertices, and two actions. Therefore, there are only

N1 = 2

(
L

h
+ 1

)
(16)

I X1I X– 1I X+

hh h h

Fig. 1 1-Dimensional state-space with overlaying pseudogrid.
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IJ X ( )1I J X+( )1I J X−

( )1I J X+

( )1I J X−

1x

2x

1x
h

1x
h

1x
h

1x
h

2xh

2xh

2xh

2xh

Fig. 2 2-Dimensional state-space with overlaying pseudogrid.

state-action pairs, where N is the number of state-action pairs.
The 2-dimensional problem can be represented in a similar manner. In this case, the state-space is represented by

Fig. 2. An arbitrary set of vertices {11X, 12X, . . . , ijX, . . .} are again introduced at uniform distances hx1 or hx2 apart.
The actions available to the agent are again restricted as in the 1-dimensional case. For the 2-dimensional case, when
the agent is at the IJ th vertex X = IJ X, it may only move to vertices (I−1)J X, (I+1)J X, I (J−1)X, and I (J+1)X, a total
of 4, or 2 ∗ 2, actions.

This problem is more complex than the previous one, yet it is still simpler than a 2-dimensional continuous state-
space problem. For this 2-dimensional discrete case, let Lx1 and Lx2 denote the length in the x1- and x2-direction,
respectively, of the continuous domain. This results in

NV2 =
(

Lx1

hx1

+ 1

) (
Lx2

hx2

+ 1

)

=
2∏

i=1

(
Lxi

hxi

+ 1

)
(17)

vertices. Therefore, there are

N2 = 2 ∗ 2
2∏

i=1

(
Lxi

hxi

+ 1

)
(18)

state-action pairs. This 2-dimensional development is what will be used in the rest of this paper.
From here the formulation can be generalized to the N -dimensional case. For an N -dimensional continuous state-

space, an arbitrary set of vertices {11...1X, 11...2X, . . . , NN...NX} are introduced at uniform distances hx1 , hx2 , . . . , hxN

apart. The actions are restricted to the two nearest vertices in any direction from the current vertex X = IJ ...X,
yielding a total of 2N actions available to the agent from any given vertex.
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Now let Lx1 , Lx2 , . . . , LxN
denote the length in the x1-, x2-, . . . , and xN -directions, respectively. As a result,

there are

NVN
=

N∏
i=1

(
Lxi

hxi

+ 1

)
(19)

vertices. Therefore, there are

NN = 2N

N∏
i=1

(
Lxi

hxi

+ 1

)
(20)

state-action pairs.
Discretizing the domain in this way can greatly simplify a learning problem. Intuitively, the larger hxi

is, the fewer
the number of vertices, resulting in fewer visits by the agent necessary to learn the policy correctly. Special care
must be taken, however, in the choice of hxi

and the definition of the goal the agent attempts to attain. If the only
goal state lies between vertices, then the agent will be unable to learn the actions necessary to reach the goal state.

The “Curse of Dimensionality” can still become a problem when using this technique. As N increases, the number
of state-action pairs increases quickly. Manipulation of hxi

can alleviate some problems, but can eventually become
overwhelmed. However, the number of state-action pairs remains finite. In this paper, a 2-dimensional problem is
analyzed. Careful manipulation of hxi

helps to maintain a manageable learning problem.

C. Exploration/Exploitation Dilemma
A policy, π is the mapping of states to actions, π : S → A, which means that the agent selects its next action

at based on the current state st , or π(st ) = at . When selecting the next action, one typical problem the agent
has to face is the exploration–exploitation dilemma [17]. If the agent selects a greedy action that has the highest
value, then it is exploiting its knowledge obtained so far about the values of the actions. If instead it selects one
of the nongreedy actions, then it is exploring to improve its estimate of the nongreedy actions’ values. Exploiting
knowledge from the outset usually results in the agent finding and preferring local optima rather than the global
goal [17]. Exploring from the outset and continuing throughout the learning process, however, avoids this problem,
though the agent is more likely to continue to randomly explore areas that are not of interest [17]. Given that Q-
learning is an off-policy reinforcement method, the policy followed while learning must be chosen to balance these
concerns, promote efficient convergence, and tailored for the application of interest. Possible policies include greedy,
nongreedy, ε-greedy (Eq. (14)), and softmax action selections.

Many unique solutions exist to handle the exploration–exploitation policy dilemma of both discrete and continuous
reinforcement-learning problems. One such solution is to integrate the Metropolis Criterion into Q-learning, which
eliminates some exploration blindness [3,4]. A greedy exploration policy based on the state balance criterion can
also be used [5]. Exploration and exploitation can also be decoupled to cope with any instabilities in the Q-learning
algorithm [6]. An exploration algorithm that considers “prediction accuracy requirements” during exploration has
been applied to a robot juggling Q-learning problem [7].A Q-learning agent can also be restricted to explore only those
options that are likely to avoid any unnecessary risk, which allows the algorithm to balance competing objectives and
find satisficing solutions [8]. Similar to Goodrich’s satisficing Q-learning is Park and Kim’s two mode Q-learning,
which also separates success and failure experiences to learn more quickly. Simsek and Barto [20] propose a method
efficient exploration aided by a principled heuristic. Singh et al. [21] describes in detail the proving of convergence
for single-step on-policy reinforcement learning algorithms for control with both decaying exploration and persistent
exploration.

For part of the analysis in this paper, the agent is allowed to randomly explore the thickness/camber state-space and
receive reinforcement based on the aerodynamics of the airfoil during all learning episodes to gain an understanding
of the nature of the problem. The rest of the analysis will entail changing the policy the agent uses to choose actions
throughout the learning process. The agent will begin learning by using a fully random exploration process. As the
agent conducts learning episodes, the agent begins to exploit its knowledge more often. This change in policy is
caused by increasing ε from 0 → ε � 1. This annealing of ε allows the agent to explore early on to eliminate any
local optima. During later episodes the agent exploits its knowledge to find the global goal.
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D. Annealing of Discount Factor
The discount factor also influences convergence of the reinforcement-learning problem. The discount factor, γ ,

is related to the discount rate as defined by economists by as

γ = 1

1 + r
(21)

where r is the discount rate [22]. Though Lampton et al. [16] showed that a constant value of γ = 0.7 yielded good
convergence properties, for high-dimensional problems annealing the discount factor can aide convergence [22].
Annealing the discount rate can even affect smaller problems as will be shown later in this paper. At low values of
γ , the agent learns primarily the utility of the RL problem [22]. Incrementally increasing γ throughout the learning
process allows the agent to learn how the primary costs of its actions accumulate [22]. As the methodology developed
in the this and other papers is a stepping stone for higher dimensional, and more complex, learning problems, the
effect of annealing γ from low to high values is analyzed.

III. Airfoil Model Representation
To calculate the aerodynamic properties of many different airfoils in a short period of time, or as a single airfoil

changes shape, a numerical model of the airfoil is developed. A constant strength doublet panel method is used to
model the aerodynamics of the airfoil. The main assumption is that the flow is incompressible, otherwise a much
more complex model is necessary. This assumption is valid because current interests lie in the realm of MAVs, which
fly at speeds less than Mach 0.3. Other assumptions are that both the upper and lower surfaces of the airfoil are
pinned at the leading and trailing edge rendering the structural moment at these points to be zero. These boundary
conditions become important in later sections in the calculation of My and σxx . One final assumption is that the flow
is inviscid. Thus, the model is only valid for the linear range of angle-of-attack.

The flexibility of this type of model allows the reinforcement-learning algorithm developed to manipulate four
possible degrees-of-freedom. The degrees-of-freedom are

1) Airfoil thickness
2) Camber
3) Location of maximum camber
4) Airfoil angle-of-attack
Despite this versatility, there are some limitations to the model. As the model uses a panel method to calculate the

aerodynamics, it is very sensitive to the grid, or location of the panels, and the number of panels created. The grid
must be a sinusoidal spaced grid in the x direction, which puts more points at the trailing edge of the airfoil. This
type of grid is necessary because many aerodynamic changes occur near the trailing edge. If the number of panels
were to decrease, the accuracy of the model would also decrease. However, as the number of panels generated is
increased, the computational time of the model increases as well. Thus, a balance is needed between accuracy and
computational time. This balance can be achieved by finding a set number of panels for which any increase from
that number of panels yields a minimal accuracy increase. For example, assume 50 panels are chosen initially. If
the number of panels were changed to 100 and the accuracy of the model increased by 10 percent, this increase
in the number of panels would be deemed necessary. If the number of panels were changed from 100 to 150 and
the accuracy of the model increased by <1 percent, then this increase in the number of panels would be deemed
unnecessary, and 100 panels is chosen as the correct number of panels to use.

A full description of the airfoil model development can be found in [16]. Validation and verification of the airfoil
model can also be found in [16].

IV. Morphing Airfoil Cast as a Reinforcement Learning Problem
The morphing of the airfoil entails changing the thickness and camber at this stage in the development of this

methodology (see Fig. 3). The reinforcement-learning agent specifies these two parameters corresponding to the
current flight condition (a.k.a. aerodynamic goal). The CFD model itself constitutes the environment with which the
agent interacts. Thus, the state variables are the thickness and camber inputs to the CFD model.

251



LAMPTON, NIKSCH, AND VALASEK

Airfoil
Camber line
Chord line

Thickness

Fig. 3 Representative Airfoil.

The agent interacts with its environment by choosing actions from a set of admissible actions. The state-space is
discretized in the manner described in Sec. B, so these actions include incremental changes in the shape parameters of
the airfoil. Thus, the agent is effectively restricted to movement between adjacent vertices. An example of admissible
action in this context is the following. The agent chooses to move in the x1-direction from vertex IJ X in the
2-dimensional problem. For the initial discretization, the two possible actions in the x1-direction are defined as
follows:

A1
11 ≡ (I+1)J X − IJ X = h1

x1

A1
12 ≡ (I−1)J X − IJ X = −h1

x1

(22)

Equation (22) can be summarized by saying the initial admissible actions in the x1-direction are A1 = ±h1
x1

.
Similar relationships can be found for the x2-direction. Admissible actions in the other direction is A2 = ±h1

x2
. The

definitions of the xi axes for all of the examples are defined in Table 1. To read these tables consider the x1-direction,
for example. The agent changes ±0.50% of the chord in thickness in this direction when hx1 = 0.50%.

The goal, g, of the agent for this problem is defined by the aerodynamics of the airfoil. Every goal has a range,
gr , associated with it. The numerical example to follow has goals defined by the airfoil lift coefficient, cl .

The reward structure for this problem is a traditional negative, neutral, and positive reinforcement scheme and was
used in the early stages of this research. This scheme is summarized in Table 2. The s < limitsmin or s > limitsmax

refers to when the state, s is beyond the bounds or limits of the of the state-space. These limits are listed in Table 3.
Thus, the morphing airfoil problem is cast as a reinforcement-learning problem. The agent chooses and action

that changes the state (thickness and camber) of the airfoil. The aerodynamics of the airfoil are calculated by the
environment, and the agent “senses” the lift, drag, and/pitching moment. The appropriate reinforcement is calculated
based on the current aerodynamics, the goal aerodynamics, and any constraints. Finally, the update equation, Eq. (13),
is used to update the knowledge base learned by the agent. Then the process repeats. The agent will learn not only

Table 1 Morphing airfoil axis definitions

xi Definition

x1 Thickness (%)
x2 Camber (%)

Table 2 Morphing airfoil reward structure

Bounds Reward

g − gr � c � g + gr 20
s < limitsmin or s > limitsmax −20
Otherwise 0

Table 3 Morphing airfoil parameter limits

Limit Lower Upper

Thickness (% chord) 10 18
Camber (% chord) 0 5
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shape(s) that meet the aerodynamic goal specified by the user, it will also learn the path or control policy to maneuver
from any thickness/camber pair within the state-space to a shape that meets the goal.

V. Monte Carlo Simulation
The action-value function is analyzed by conducting a performance-based policy comparison using a set of

simulations using the learned function. The performance-based policy comparison measures the performance by
conducting a set of Monte Carlo simulations. It is referred to as Monte Carlo in the sense that initial conditions are
taken from a uniform distribution and a large number of simulations are conducted and recorded. In each simulation,
the agent is initialized in a random nongoal state within the region of the current level of discretization. It then
uses the current learned greedy policy, meaning that it exploits its current knowledge of the state-space, to navigate
through the state-space to find the goal. A success occurs when the agent navigates from the random initial state
to a goal state without encountering a boundary. A failure occurs when the agent either encounters the outer most
boundary of the state-space, the boundary of the current level of discretization, or gets “lost” and wanders around
the state-space. This simulation is conducted a predefined number of times, usually 500 simulations in this research,
and each success is recorded. The success percentage is then calculated as follows:

% Success = # of successes

Total # of simulations
(23)

When this success percentage is above some threshold, usually 98% in this research, the second stopping criterion
is satisfied. Both the first and the second stopping criterion must be met for the learning at the current level of
discretization to be terminated and learning continued at a finer level of discretization as necessary.

VI. Numerical Examples
The purpose of the numerical examples is to demonstrate the learning performance of the reinforcement-learning

agent when integrated with the aerodynamic model. The agent follows either a 100% exploration policy, an ε-greedy
policy with annealing, or an ε-greedy annealing policy in addition to annealing of the discount factor. The agent is to
learn the respective action-value functions using each one of the four sets of hxi

. For the purpose of direct comparison
between the discretized state-space effected by the different hxi

sets, the chord, angle-of-attack, number of episodes,
boundary reward, goal reward, and aerodynamic goal are the same for each round of learning. The values of these
constants are listed in Table 4.

For each of the 5000 episodes, the agent begins in a random initial state that is not classified as a goal state. It
explores the state-space of thickness–camber combinations until it hits the predefined limit of total number of actions
or finds a goal state. Should the agent run into a boundary, that boundary location is noted, and the agent chooses
another action. The actions for all four cases are defined by the hxi , listed in Table 5.

The learning performance is analyzed in several ways. First, the dimensionality of the action-value functions are
compared between the action sets. Next, the simulation results for different policies are compared for each set of hxi

to examine both the learning performance for a particular set of hxi
. The simulation results are then recast such that

comparisons between sets of hxi
for each policy can be more easily made to again examine the learning performance.

Finally, the final value functions are compared and analyzed.

Table 4 Parameter constants

Parameter Value

Chord 1 m
Angle-of-attack 2.0◦
Episodes 5000
g cl � 0.4
α 0.01
γ 0.7
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Table 5 Distance between adjacent
vertices

Cases hx1 hx2

Case 1 0.10 0.10
Case 2 0.25 0.25
Case 3 0.50 0.50
Case 4 1.00 1.00

Table 6 Nongoal states and state-action
pairs

hxi
States State-action pairs

0.10 3379 13,516
0.25 530 2120
0.50 153 612
1.00 45 180

A. Dimensionality
The dimensionality of the problem to be learned is an ever present concern for learning algorithms.A problem with

a high number of states, or in the case of Q-learning, a high number of state-action pairs, necessitates a greater number
of learning episodes, and thus more computational time, to learn the required action-value function. Conversely, fewer
states mean faster learning, especially given that computational aerodynamic models are usually computationally
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intensive. The caveat is that there must be enough states to fully capture the details of the action-value function for
the problem at hand. The number of nongoal states and state-action pairs for each value of hxi

listed in Table 5 are
shown in Table 6.

B. Policy Comparison and Analysis
This section considers a direct comparison for each hxi

between action-value functions when the agent follows
one of the following:

1) 100% exploration policy,
2) ε-greedy policy with annealing,
3) ε-greedy annealing policy and annealing of the discount factor, γ .
The results of the simulations described in Sec. V are shown in Figure 4. All four subfigures show that the action-

value function in which the agent followed an annealing policy converges to a good solution the quickest. A 96–100%
success rate is achieved in as little as 200 episodes for the coarsest discretization and 800 episodes for the finest
discretization. The results of the learning in which the discount factor also anneals shows a much lower success
rate early in the learning, then converging quickly after a couple hundred episodes. In this case, convergence to a
95–100% success rate is achieved in 200–3000 episodes. The most distinct differences between policies are seen in
Fig. 4a. Rate of convergence is expected to be lower, given the larger number of states the agent must visit. Figure 4d
suggests that when the agent must visit only a small number of states, annealing the discount factor and/or the policy
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makes little difference in the rate of convergence. The “kink” evident in Fig. 4b is most likely a result of the small
probability that the agent chooses a random action and encounters a boundary.

C. hxi
Comparison and Analysis

This section takes a different approach than the previous section and considers a direct comparison between the
action-value functions for each hxi

. The results presented in this manner are shown in Fig. 5. The figure shows that
there is the most difference in convergence between hxi

values when the policy is fully explorative and when both
the policy and discount factor changes as learning progresses; 5000 and 3000 episodes, respectively, are required
for all four action-value functions to converge to at least a 95% success rate. Generally, convergence for these cases
increases as hxi

increases. This result is again due to the decreasing number of states the agent must visit and update.
Figure 5b shows the highest rate of convergence for all values of hxi

. All four action-value functions converge to
nearly a 100% success rate within 800 episodes. This fact suggests that for this problem annealing the policy from
fully explorative to almost fully exploitative yields the best results.

D. Value Function Analysis
It is helpful to consider a value function approximated from the learned action-value function. The value function

can show how the learning differs when learning parameters or discretization is modified. The value function is
calculated using the following equation:

V (s) ≈ max
a

Q(s, a) (24)

The value functions calculated for each of the final action-value functions presented in the previous sections are
illustrated in this section.
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Figure 6 shows the value functions when the agent follows a fully explorative policy. The general shapes of each
of the value functions are similar. The main difference shown is that the maximum value in the value functions range
from 10 to almost 60 as hxi

increases. The reason is that with fewer states to visit, the agent is able to visit and
reinforce every state more often than if there are a larger number of states. Also, when there are a larger number
of states, it takes more visits to each state for the rewards to propagate back into neutral or nongoal states. This
results in the sharp decline in value from the area near the goal to the small values for nongoal states farther from
the goal. Notice the sharpness of the decline lessens as hxi

increases. The smoothness of the functions is a result of
the policy allowing the agent the chance to visit each state an equal number of times. (Note: In Figs 6, 7, and 8, C is
an abbreviation for Camber and T is an abbreviation for thickness.)

Figure 7 shows the value functions for a policy annealing from fully explorative to mostly exploitative. Notice
the shapes of the value functions now differ between each hxi

. Figure 7a shows two prominent peaks in the value
function. This results from an unequal distribution of state visits early on in the learning. At the outset the agent
explores randomly, but given the number of state-action pairs, the agent does not necessarily have time to evenly
propagate rewards through the action-value function. For this example of learning, the agent visited the states near
the peaks of Fig. 7a early. As the policy changed to require the agent to exploit its knowledge more often, the agent
favored the two areas it had already explored the most. This effect resulted in the two peaks. A similar phenomenon
occurred for hxi

= 0.25% and is shown in Figure 7b. There are a couple small peaks that are not as extreme as those
seen in Fig. 7a. This result means that the agent was able to more evenly explore all the states before the policy
changed. Given the fewer number of states, this is to be expected. The trend continues as hxi

increases. Figure 7d
is very similar to Fig. 7d. From this figure, it is evident that as the number of states decrease, the policy the agent
follows while learning affects the final action-value function less and less.

Figure 8 shows the value functions resulting from both an annealing policy as well as the discount factor, γ ,
increasing from 0.0 to 0.7 as learning progresses. Figure 8a shows a similar prominent peak in the value function as
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Fig. 8 Value functions for annealing of ε and γ .

that seen in Fig. 8a. This peak is again a result of the policy followed and the total number of states. A peak is not
evident in Fig. 8b as it was in Fig. 8b. One reason is that the discount factor early in the learning is equal to or near
zero. When the discount factor is equal to zero, the agent updates the action-value based only on whatever reward
it receives. No update in the form of γ max

a′ Q(s ′, a′) is added to the value function. Another reason is the policy

followed as noted previously. Once again as the number of states reduces to that shown in Fig. 8d, the value function
is not appreciably different from the value functions in Figs. 6d and 7d.

VII. Conclusions
This paper analyzes a technique for learning the optimal shape change policy of a morphing airfoil that combines

machine-learning and analytical aerodynamic calculations. Effects of changing learning parameters such as the
policy the agent follows and the discount factor are investigated, along with the effects of the discretization of the
state-space. With these changes, the agent learns the policy to morph in two interdependent degrees-of-freedom,
thickness and camber, from some initial state to the defined goal state. The effects the differences in policy, discount
factor, and discretization were then presented and discussed.

The results show that the agent following the policy annealing from fully explorative to almost fully exploitative
yielded the fastest convergence of the action-value function, regardless of the value of the action step size. Convergence
to a success rate between 96 and 100% was reached in as little as 200 epsiodes and as many as 800 episodes. This
policy is a promising candidate to handle the increasing number of states as the morphing airfoil problem becomes
more complex. An action step size value of 1.00% resulted in the fastest convergence rate, regardless of policy
followed or discount factor. A nearly 100% success rate was achieved within 200 episodes in all instances. The agent
tends to favor particular goal states when the discount factor and/or the policy is annealed and the discretization of
the state-space is fine. The reinforcement-learning agent is sensitive to the discount factor, the policy followed by the
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agent, and discretization of the state space. If the discretization is very fine, then rate of convergence is slower, taking
upwards of 3000 episodes to achieve a 96% success rate, than when the discretization is coarse, only 200 episodes
needed to achieve a 100% success rate.

The results show that the morphing airfoil problem is most sensitive to the policy followed and the discretization of
the state-space, which is usually the case for reinforcement learning problems. As a consequence, these two learning
parameters must be carefully tuned based on these findings for future development of the morphing airfoil/vehicle
problem specifically. Though several thousand episodes is not a large amount for many reinforcement learning
problems, the morphing vehicle problem is different in the sense that change the shape and calculating or sensing
the aerodynamics takes time, which means conducting tens of thousands or even millions of episodes is not feasible.
The results of this paper show that faster convergence can be attained with a larger discretization and some policy
manipulation, though there is a loss of detail. Conversely, a high level of precision is possible with a finer discretization
and more episodes. On the basis of these results and the nature of the problem, combining both discretizations in a
progressive manner may meld the best of both: fewer episodes needed for convergence and a high level of precision
with respect to the goal.
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