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Active Length Control of Shape Memory Alloy Wires Using

Reinforcement Learning

KENTON KIRKPATRICK AND JOHN VALASEK*
Aerospace Engineering Department, Texas A&M University, College station, TX, USA

ABSTRACT: Actively controlled shape memory alloy actuators are useful for a variety of
applications that require accurate shape control. For shape memory alloy wires, strain is
modulated with temperature, usually by an applied voltage difference across the length.
Numerical simulation using reinforcement learning has previously been used for determining
the temperature—strain relationship of a shape memory alloy wire and for synthesizing a
limited control policy that relates applied temperature to desired strain. However, learning
the voltage—strain relationship is of more practical interest in synthesizing feedback control
laws for shape memory alloy wires since the control input in practical applications will be an
applied voltage that modulates temperature. This article implements a Sarsa-based algorithm
for determining a feedback control law in voltage—strain space and validates it experimentally.
Experimental results presented in this article demonstrate the ability to control a shape
memory alloy specimen from arbitrary initial strains ranging from zero to maximum, includ-
ing intermediate strains, to an arbitrary intermediate strain. The results also demonstrate
the ability to control the specimen from similar arbitrary initial values of strain to zero
strain. The voltage—strain learning algorithm developed in this article is a promising candidate

for synthesizing practical shape memory alloy actuator feedback control laws.

Key Words: shape memory alloys, reinforcement learning, feedback control, Sarsa.

INTRODUCTION

HAPE memory alloys (SMAs) have been under con-
S siderable investigation as a candidate smart material
for aerospace applications. Two of these applications
are structural shape-changing for a morphing aircraft
(Kudva, 2004; Barbarino et al., 2009) and control of
fluid-structure interactions or aeroelastic effects
(Strelec et al., 2003; Bae et al., 2005). The shape
memory effect (Waram, 1993) makes SMAs ideal for
use in structures that undergo large amounts of strain
(Mavroidis et al., 1999). At lower temperatures, SMAs
begin in a crystalline structure of martensite and
undergo a phase change to austenite as the alloy is
heated. Due to asymmetry in these phase transforma-
tions, an SMA wire exhibits a hysteresis behavior in its
temperature and strain relationship (Mavroidis et al.,
1999). This hysteresis occurs because the phase transfor-
mation from martensite to austenite begins and ends at
different temperatures than the reverse process.

Control of this transformation is critical for successful
actuation. Heating via electrical resistance is commonly
used to affect temperature changes in SMAs, and
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modulating this heating is necessary for purposes of con-
trol. For an SMA wire, the rate at which temperature
changes is a function of the physical properties of the
wire, the rate at which heat is lost to the environment,
and the rate at which the wire heats due to electric cur-
rent. The relationship between temperature and applied
voltage during the crystal phase transformation can be
determined through the following differential equation
(Marchado, 2007):

or V2 PT
C—=-——hA(T-Ty) +k=— —6aT
PCor =& Ml Jthga —ooT

+ (7 — cAaT — pAsyT)E

In Equation (1), p is the wire density, C the specific
heat of the wire at constant volume, 7 the wire temper-
ature, V the voltage difference in the wire, ¢ the time, R
the wire electrical resistance, 4 the convective heat trans-
fer coefficient, A the wire surface area, 7., the ambient
temperature of the coolant surrounding the wire, k
the thermal conductivity, and x the direction along the
wire length. The phase transformation causes extra
terms to appear as a function of the properties during
transformation. In this additional part of the heat trans-
fer equation, o is the stress, o the thermal diffusivity, =
the thermodynamic driving force for transformation, sq
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2 K. KIRKPATRICK AND J. VALASEK

the specific entropy at the reference state, and & the
martensitic volume fraction. The parameters a, p, and
C are typically assumed to be the same in each phase,
but sy and © are variable between the phases. The ther-
modynamic driving force is a function of both the mar-
tensitic volume fraction and the Gibbs free energy.

When temperature and its time derivative are known,
Equation (1) can be used to determine the required volt-
age. However, it is not readily suitable for use in SMA
control policy learning because it requires tracking sev-
eral terms that are not easily measured or derived. Thus,
it is a more straightforward process to learn the policy for
voltage—strain directly, rather than try to convert between
temperature and voltage.

Considering a state space consisting of temperature—-
strain variables, the hysteresis behavior of SMAs is most
often characterized with constitutive models based on
material parameters (Lagoudas et al., 2001). This can be
a time and labor intensive process, and it does not char-
acterize the hysteresis in real-time. Other methods that
characterize hysteresis behavior are phenomenological
models (Lagoudas et al., 1996; Bo and Lagoudas, 1999),
micromechanical models (Patoo et al., 1987; Falk, 1989),
and empirical models based on system identification
(Banks et al., 1997; Webbet et al., 1998). These models
are quite accurate, but some only work for particular
types of SMAs, and most require complex computations.
Many of them are also unable to be used in dynamic load-
ing conditions, making them unsuitable for morphing
control applications. Additionally, none of these methods
directly characterize the minor hysteresis loops that cor-
respond to an SMA that is not fully actuated (Figure 1).

Learning a control policy capable of achieving a strain
that rests within the interior of the transformation curve is
important because it can greatly increase the range, and
therefore functionality, of SMA actuators. If the only
values that can be controlled correspond to maximum
and minimum strains, an SMA actuator would be limited

Strain

0 20 60 80 100
Temperature (C)

Figure 1. Typical SMA major and minor hysteresis loops
(Kirkpatrick and Valasek, 2009).

to only two possible positions. Learning these interior
goals is more complicated than learning the extreme
values because all that would be required for the control
policy would be simply to apply the maximum and mini-
mum voltages every time. A Machine Learning algorithm
introduced in the section called ‘Reinforcement Learning’
(RL) is used to determine this hysteresis mapping in tem-
perature—strain space, and in real-time (Kirkpatrick and
Valasek, 2009). RL uses a process of earning rewards and
incurring penalties in order to build a memory of which
actions (control inputs) are best at achieving a goal
(desired strain), and which are poor. Since it learns how
to control an SMA to intermediate strains and is applica-
ble to both simulation and experimentation-based
research, the RL-based approach is useful for the morph-
ing actuation and control problem (Haag et al., 2005;
Valasek et al., 2005, 2008). Additionally, when used in
an experimental setting with SMA specimens, it deter-
mines both the major and minor hysteresis loops in addi-
tion to learning the control policy. However, this method
learns the temperature—strain relationship and control
policy, not the voltage—strain relationship and control
policy which are much more useful for applications.

This article develops an RL-based method for deter-
mining the voltage—strain relationship and control
policy for SMA length control and validates it with an
SMA specimen using an experimental apparatus. This
article is organized as follows. The second section intro-
duces the basics of RL and extends it to this specific
research problem. Details of the Sarsa method, the
e-Greedy approach, and function approximations are
also presented. The third section explains how the exper-
imental apparatus is built for verifying the approach and
includes a discussion of cooling fluid selection. The
fourth section shows how the RL learning agent is inter-
faced and connected to the experimental apparatus for
real-time learning. The fifth section provides a detailed
explanation of the characterization of SMA hysteresis
behavior in temperature—strain space. Both simulation
and experimentation results are discussed. The sixth sec-
tion presents the voltage—strain learning results and then
demonstrates how to control an SMA wire’s thermally
induced crystal phase transformation. Conclusions are
presented in the final section.

REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a process of learning
through interaction with an environment, in which a
software agent (algorithm program) uses previous
knowledge of the results of its actions in a particular
situation to make an informed decision when it later
returns to the same situation. It is a method that has
been used for many diverse situations ranging from
board games to behavior-based robotics (Sutton
and Barto, 1998; Konidaris and Hayes, 2005;
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Varshavskaya et al., 2008). RL methods learn an action-
value function that provides a mapping from states to
actions. The action-value function can be used as a con-
trol policy to determine the proper control inputs for a
given state. For use in applications, this control policy is
usually approximated with a large matrix that is com-
posed of every possible state for the rows, and every
possible action for the columns. In this study, a third
dimension is included in the control policy that is com-
posed of every possible goal state.

The three most commonly used classes of algorithms
for RL are Dynamic Programming, Monte Carlo, and
Temporal Difference (Sutton and Barto, 1998). The
majority of Dynamic Programming methods require an
accurate environmental model, often making them
impractical in problems with complex models. Monte
Carlo only allows learning to occur at the end of each
episode, causing problems that have long episodes to
have a slow learning rate. Temporal Difference methods
have the advantage of being able to learn at every time step
without requiring the input of an environmental model.
Here, a method of Temporal Difference called Sarsa
is used. Sarsa is an on-policy form of Temporal
Difference, meaning that at every time interval the con-
trol policy is used to select actions to be taken, and the
control policy is also evaluated and improved as learning
occurs. Sarsa updates the control policy using the current
state, current action, future reward, future state, and
future action to dictate the transition from one state/
action pair to the next (Sutton and Barto, 1998). The
action value function used to update this control policy is:

O (s, a) = Qk(s, a) + by (2)

where s is the current state, « the current action, Q the
control policy, and the k subscript signifies the current
policy. The o term is a parameter that is used to ‘penal-
ize’ the RL algorithm when it repeats itself within each
episode. The term 9§, is defined as

ok =11 (8 d) + 7Qrni (s, d') — Qx(s. a) 3)

where the term ' refers to the future state, &' the future
action, k+ 1 the future policy, and y a constant that is
used to optimize the rate of convergence by weighting
the future policy. Equations (2) and (3) can be combined
to form the detailed action-value function:

Ok (s,a) = Ok(s,a) + afres (s, d')

+ 901 (s, d") — Qk(s,a)] (4)

The reward given for each state/action pair is defined
by r, which is defined by the user for each situation.
Here, a reward of 1 is assigned when a goal state is
achieved, while a reward of 0 is assigned for achieving

any other state within range. If the boundaries of the
problem are exceeded, a reward of -1 is assigned to dis-
courage the agent from taking that action again.
Likewise, the learning rate, o, and the discount factor,
v, are user defined. A constant discount factor of y=0.8
is used to generate the results presented here, while the
learning rate is defined to be a function of the number of
visits to a particular state. With the variable n, repre-
senting the number of times the current state is visited
during an episode, the learning rate for that state is
determined by:

a=— (5)

For properly learning the voltage—strain relation-
ship, the control policy is modified to include the goal
(strain) as a third dimension. This permits the control
policy to be represented as a set of tables that can be
used to look up the correct voltage values to use when
the current state and goal state are known. With g rep-
resenting the goal state, the modified action-value func-
tion now becomes:

Qk(S7 aag) = Qk(s, a,g> + a["k+l(slaalag)

6
+7Qk+l(slaa/=g) - Qk(s, avg)] ( )

This action-value function generates the policy that
is used to learn the parameters of the system being
explored. This notation is slightly different than the
classic action-value function because of the inclusion
of the goal state as an extra dimension to the function.
However, this is a notational difference only. Separate
value functions must be learned for each desired goal
state, so including g in the function simply indicates
that this is the case, and thus does not affect the conver-
gence of the learner.

Next, to update the policy using the action-value func-
tion provided in Equation (6), the Sarsa algorithm is
used (Sutton and Barto, 1998):

Sarsa Algorithm:

e Initialize Q(s,a,g) arbitrarily
e Repeat for each episode:
— Initialize s
— Choose a from s using policy derived from Q(s,a,g)
(e.g., € -Greedy)
— Repeat for each time step:
* Take action a, observe r, s,
* Choose ¢ from s using policy derived from
0(s,a,g) (e.g., e-Greedy)
* 0s.a.8) — 0(s.ag)+o[r+vy Qs .d.g)-Os.a.8) ]

* g8, a—d

— Until s is terminal
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The dilemma of selecting the best action from Q lies in
the fact that the policy does not have any information
about the system in the beginning, and must therefore
explore so as to learn from interactions with the envi-
ronment. Sarsa is able to learn the system behavior when
the algorithm has no prior knowledge. However, it must
explore in the early episodes since it cannot exploit pre-
vious knowledge. In future episodes, exploitation of
knowledge becomes more favorable so that actions lead-
ing to the goal are reinforced. Balancing exploration and
exploitation is key to convergence of the RL agent and
therefore to obtaining the best control policy. The
e-Greedy method of choosing an action is used here,
which means that for some percentage of the time the
RL agent will choose to randomly select actions, i.c.
explore, rather than choose an action that the action-
value function believes will yield the highest reward
(Whiteson et al., 2007). This is because the RL agent
might not have already explored every possible action,
and a better action may exist than the one that is pres-
ently thought to yield the greatest reward. The variable ¢
is a number between 0 and 1 that determines the percent
chance that exploration will be used instead of exploita-
tion. By definition, a fully greedy method chooses only
the optimal path without ever choosing to explore new
paths. This corresponds to an e-Greedy method where
€= 0. The &-Greedy action-value method is imple-
mented with the following algorithm:

e-Greedy Action-Value Method:

e Choose ¢ between 0 and 1
e Repeat for each action selection:
— Generate random value B between 0 and 1
—Ifp>1-¢
* g « random
—Ifp<l-¢
* a+ Q(s,a,g) exploitation

To converge to the best control policy in the shortest
time, an episodically annealing &-Greedy method is
used to alter the exploration constant, &, depending
upon the current episode. In the first episodes, little
to no information has been learned by the policy, so
a greater degree of exploration is required. Conversely,
in future episodes less exploration is desired so that the
RL agent can exploit the knowledge that it has learned.
To achieve an annealing e-Greedy method, a simple
algorithm is constructed that determines what value
should be used for € at each individual episode. The
exploration probability ranges from 70% (e¢=0.7) in
the first several episodes to 5% (£=0.05) in the final
episodes. Even during later episodes, the algorithm still
never exhibits a fully greedy method of choosing
actions. A small chance of performing exploratory
actions is still allowed because it forces the agent to

check for better paths in case the path it converged
upon is not actually the best choice.

The objective of the RL agent is to converge upon the
optimal voltage needed to produce the desired strain
based upon the current strain in the SMA wire. The
states are defined by the current axial strain, and the
actions are defined by the desired voltage that is applied
to the SMA wire. Conversion between strain and posi-
tion is straightforward, so strain is used as the state
because it can be global to specimens of different
lengths. Thus, the specified goal is a desired strain of
the SMA wire.

When RL is applied to a system with a continuous
state space, the state space is not entirely represented.
Since SMA wire length is continuous, the policy must be
approximated for a continuous system (Santa Maria
et al., 1997). The use of function approximation allows
the agent to explore a state space that has fewer discrete
values, resulting in shorter learning times. The k-Nearest
Neighbor method, used here, is an instance-based
machine learning algorithm that learns an approximation
of a target function by means of assigning values to attrib-
utes associated with the k-nearest points in Euclidean
distance to the target instance (Mitchell, 1997). The
Euclidean distance is the geometric distance between
instances in n-dimensional space, where n is the total
number of attributes. It is assumed that the properties
of a point in the state-space are likely to be very similar
to the properties of the points that have similar attribute
values (Russel and Norvig, 2003). In this study, the goal
state is I-dimensional in both formulations of the problem
that are explored, so a I-Nearest Neighbor is imple-
mented. Once the RL agent learns the most appropriate
voltage required to achieve each goal strain from each
initial strain, it can be used thereafter to control the
length of an SMA wire in real-time.

EXPERIMENTAL APPARATUS

The SMA wire is mounted in an apparatus that is
constructed of Plexiglas and aluminum supports. The
apparatus is sealed so that no fluid can leak out
during the experiment. The SMA wire is attached to
the walls by Kevlar cords for strength and insulation
and is set in series with a free-weight that is attached
by Kevlar over a dual pulley system. The mass of the
free-weight changes depending on the diameter of the
wire being tested and is selected so that the wire experi-
ences a stress of approximately 120 MPa in its initial
martensitic state at zero voltage and room temperature.
A Linear Position Transducer (LPT) is supported above
the fluid by an aluminum beam, and the probe end is
connected to the Kevlar cords for position measurement
without receiving current from the SMA wire. The LPT
sends a voltage to the Data Acquisition (DAQ) board,
which changes depending on the position of the probe.
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The DAQ board has a sampling rate of 250 kS/s, and
therefore does not limit the RL agent convergence time
since the agent chooses new actions based on one sample
every 15 s. A variable voltage supply is used to provide a
voltage difference across the wire for resistive heating
and is connected to the SMA wire via alligator clips
that are positioned carefully along the wire so that
every specimen tested maintains the same effective initial
length. The voltage supply receives its commands from
the DAQ board with an input/output voltage ratio of
3.6 and outputs voltages in the range of 0.00—2.80V.
For the state inputs to the RL agent, only strain and
voltage are needed, but since the actuation of the SMA
wire 1S temperature-based, the experimental setup
includes temperature measurements for the sake of ref-
erence to make sure that the wire follows the hysteresis
path correctly. A thermocouple is attached to the SMA
wire for temperature measurements and sends small
voltages to the DAQ board that are converted to tem-
perature measurements. Figure 2 shows the complete
experimental apparatus.

The apparatus contains a pool of antifreeze that com-
pletely submerges the SMA wire and the alligator clips
to allow sufficient cooling of the wire for prevention of
overheating and to decrease the time required for the
reverse phase transformation from austenite to martens-
ite. The antifreeze is drawn out of the apparatus by a
pump that sends it into a pool for temperature regula-
tion. The external pool contains both heating and cool-
ing coils that allow it to keep the antifreeze at a specified
ambient temperature. In this experiment the ambient
temperature is kept at 21 42 ©C. The cooled antifreeze
is then drawn back out of the temperature regulation
pool by another pump and is sent into the apparatus
to continue fluid circulation and keep the coolant at a
constant room temperature. Figure 3 shows the full
setup of the experiment.

Antifreeze is used as the coolant because it cools the
SMA wire faster than air and is less conductive than

Figure 2. Experimental apparatus containing a pool of antifreeze
(Kirkpatrick and Valasek, 2009).

water. By using antifreeze full actuation of the SM A speci-
men can occur with 2.8 V instead of the 12 V required with
water. Figure 4 shows an example of using this apparatus
to characterize the major hysteresis behavior. The
input values were not determined by the RL algorithm,
but manually selected over a range of temperature inputs.
It should be noted that a bias exists in the temperature
measurements as a result of the thermocouple attachment
method. Because attaching the thermocouple rigidly to
the SMA wire could change the mechanical response,
it is instead tied to the specimen by Kevlar string. As a
result, the temperature measurements do not precisely
reflect the temperature of the specimen, but rather the
temperature of the fluid—surface interface.

The solid line in Figure 4 is determined with a math-
ematical model based on a hyperbolic tangent curve rep-
resented as double-exponentials:

M; = H/2tanh((T — ct;)a)

+8(T — (et +ct,)/2) + H/2 + ¢ (7)

M, = H/2tanh((T — ct,)a)
+5(T—(ct;+ct,))2) + H/2 + ¢

8)

Figure 3. Experimental setup (Kirkpatrick and Valasek, 2009).

0.035 7
0.03
0.025
.£0.002 A
[
% 0.015 -
0.001 +
0.005

0 20 40 60 80 100 120
Temperature (C)

— Experimental data — HTan model

Figure 4. NiTi major hysteresis in antifreeze-filled apparatus
(Kirkpatrick and Valasek, 2009).
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In Equations (7) and (8), H, ct,, a, s, ct;, and ¢, are
constants that determine the shape of the hyperbolic
tangent model. M, and M, are the strain values that
correspond to the temperature input into the equations.
The constants were selected by creating a curve that best
fits the known hysteresis behavior for the particular
SMA wire specimen used in this experiment. The con-
stants in this model are purely numerical and are not
derived from constitutive models. However, the model is
conceptually based on similar exponential-based consti-
tutive models such as the Tanaka Model (Lagoudas,
2008).

HARDWARE/SOFTWARE INTERFACE

The RL agent is implemented as a MATLAB script
which communicates with the experimental apparatus
via a LabVIEW program. This LabVIEW program
uses graphical functions to create an application capable
of communicating with external hardware. First, the
DAQ board relays the input voltages from the thermo-
couple and the LPT to the computer via a DAQ card
installed in the computer. Then, the LabVIEW program
takes these voltages and converts them into the present
temperature and strain readings. These inputs are sent to
MATLAB for use by the RL agent, and MATLAB
passes to LabVIEW the magnitude of the voltage that
needs to be applied to the wire in order for the desired
strain to be reached. LabVIEW transfers this voltage to
the DAQ board, which sends the signal to the variable
voltage supply, telling it to output the required voltage
to the SMA wire. In this manner, the RL agent is able to
learn the required control policy of an SMA wire speci-
men in an experimental fashion (Figure 5).

TEMPERATURE—STRAIN LEARNING RESULTS
The main benefit of using an RL method like Sarsa is

that learning a control policy does not require a model
of the system. In a numerical simulation, a model is

required for the purposes of simulating the environment.
To demonstrate that this method works for SMA con-
trol learning without requiring a model, the same tem-
perature—strain learning experiment that was previously
done in simulation is repeated in an experimental
setting. The experimental apparatus and software previ-
ously discussed were used to this end.

This experiment has been tested in temperature—strain
space over many episodes at several different goal states
corresponding to individual strain states, where an epi-
sode is defined as the achievement of a goal. The state
space for this experiment consists of the strain and tem-
perature at the current time step, and the action-space
consists of desired temperature. The LPT allows for
measuring the full range of motion of the wire changes,
with a strain resolution of better than 0.0001 mm/mm.
The discretization used for strain was chosen to be from
0 to 0.035 in steps of 0.001. The thermocouple used to
measure the temperature allowed for temperature mea-
surements accurate to 1©C. The temperature ranges
were chosen to be broken into bins of 10°C increments
from 25°C to 125°C, plus one bin of < 25°C, making
11 discrete temperature bins. One extra slot is added to
the state space representing going out of bounds. Since
the dimension of Q is (s x a x g), the dimension of Q
comes out to be (386 x 11 x 35).

With the current configuration, 3.3% strain is the
maximum strain possible that corresponds to complete
actuation. To demonstrate the convergence of the RL
agent, a goal state of 2.7% is investigated in detail. This
goal was chosen because it requires nearly complete
actuation of the SMA wire, but does not reach a fully
actuated state. This forces the RL program to find the
correct temperature state exactly. When the maximum
goal state of 3.3% is chosen, the state is achieved more
casily since any temperature exceeding the austenite
finish temperature will yield a fully actuated strain
state. This makes observing an intermediate strain
state much more useful for analyzing the success of the
learning agent.

> Structural setup e
Voltage application: Strain sensor- | | Temperature
power supply LPT sensor:

thermocouple

- Labview ]
MatLab interface:

reinforcement
learning

Figure 5. Hardware and software interfaces of the experimental apparatus Kirkpatrick and Valasek, 2009.
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Figure 6 shows the relationship between the episodes
completed and the total Reinforcement Learning actions
attempted for reaching a goal of 2.7% strain. Every epi-
sode presented in this data begins at a fully unactuated
strain of 0%. As this graph shows, the RL algorithm
takes fewer actions to achieve the desired goal state as
it experiences more episodes. This suggests that the RL
agent becomes more successful in completing its objec-
tive of finding the optimal temperature required to
achieve this goal state as it continues to learn.

The y-axis in Figure 6 refers to the number of times a
new action is chosen before the goal state is reached. A
new action is set to be chosen every 15 s so that the SMA
wire has time to settle out when it is an action that
requires cooling. During that 15 s delay, the previously
selected action is considered a step command. Figure 6
reveals that the control policy begins learning enough
about the system to obtain the desired strain with only
a few actions by the time it has reached 20—25 episodes.
However, it can also be seen that even after this point,
there are a few episodes that required a larger number of
actions to find the goal. This happens for two main rea-
sons. Since the RL agent being used incorporates the
logic of the &-Greedy method, even after the algorithm
begins converging on the optimal policy, exploration is
still encouraged to allow the system to find a better path
to goal state achievement. The other reason that the
agent still does not exhibit perfect control is because
the measurements of the thermocouple are inaccurate
during the intermediate phase changes and can some-
times be off by as much as 10°C. This can cause prob-
lems with the learning process that require many more
episodes to achieve an optimal policy.

Over the course of 37 episodes to a goal state of 2.7%
strain and back to a goal state of 0% strain, the major
hysteresis behavior becomes visible. The progression of
the control policy’s ability to obtain the hysteresis
behavior is also of interest from this experiment. This

’IOU T T T T T T T
» 100F B
o
]
<
<
-
e 50+ 1
A /\,/
S
A
\ f', \ N
0] L ' N\\—.—// \y \‘u/\
0 5 10 15 20 25 30 35 40

Episodes

Figure 6. Episode number vs actions required to find goal in tem-
perature—strain space (Kirkpatrick and Valasek, 2009).

information shows how well the experiment was able to
utilize the learning capabilities of an RL algorithm.
Figure 7 shows the paths that are taken to obtain the
final goal state for three different episodes.

During episode 12 (Figure 7(a)), the experimental
system required 147 actions to achieve the goal strain of
2.7%. As a result, the system wandered between many
different temperatures before it was finally able to find
the temperature that would yield the correct goal state.
After running more similar episodes, the control policy
learned how to achieve the goal state while taking fewer
actions. By episode 23 (Figure 7(b)), only four actions
were required to achieve the goal of 2.7% strain.
Episode 30 (Figure 7(c)) demonstrates the control policy’s
ability to find the correct goal state in only one action.

The RL agent’s ability to find a control policy that
learns the minor hysteresis behavior of a shape memory
alloy was of special interest because minor hysteresis
loops are difficult to obtain by other methods. By
using RL to characterize the hysteresis behavior, the
minor loops are obtained just as easily as the major
loops. The minor hysteresis behavior can be extracted
from individual episodes, as demonstrated in Figure 8.

Figure 8 represents the extraction of the major
hysteresis loop and three minor hysteresis loops from

Episode 12 - 147 Actions to Goal Strain

Co Episode 23 - 4 Actions to Goal Strain
R e
003 //
)’ /
0.025
E o /,/ |
P o015 \ ‘
) /
001 e /(/
) 5
0005 5ot
e
. ) L ,/;;éft’*‘%ﬁj =
o 10 20 30 Q 50 60 70 80

Episode 30 - 1 Action to Goal Strain

&= /
£ B
P o015 /

001 /

__/
0.005 _//
0 il
o 10 20 30 40 50 60 70 80
Temperature (C)

Figure 7. Path Progression (Kirkpatrick and Valasek, 2009).
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0.005 4
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Figure 8. Minor hysteresis loops from learning episodes.

the data obtained during episode 12 of the 2.7% goal
experimentation. Normally, these minor loops must be
obtained using mathematical models based on the major
hysteresis behavior, but this result shows that the minor
hysteresis loops can be experimentally obtained through
the RL method. The real-time data collection as the
RL algorithm experimentally determines how to achieve
each goal state allows both major and minor hysteresis
loops to be mapped precisely. This is of particular
importance for extension to voltage—strain space control
because it shows that the control policy learned by RL
can achieve a goal state starting from any initial state,
not just from the fully un-actuated or actuated states.

VOLTAGE—-STRAIN LEARNING RESULTS

The control policy developed for this SMA specimen
provides the ability to control the length of a NiTi SMA
wire for two specific goal strains within an error range of
+0.005 strain. For this experiment, the size of the state
space is decreased to only include the current strain, and
the action-space is altered to choose a commanded volt-
age directly. This is more useful from a feedback control
perspective because applications usually will use an
applied voltage as the control input to effect a temper-
ature change. The LPT and thermocouple used were the
same as in the previous experiment, but the state space
only consists of current strain, so the size of the state
space discretization is 36 with one added for out-of-
bounds. The variable voltage supply is capable of
achieving accurate voltage outputs of less that 0.01V,
so the voltage action discretization is chosen to be 21
equal bins from 0.00—2.80 V. This makes the dimension
of the Q-matrix for this experiment (36 x 21 x 35).

The wire specimen used for this experiment had an
initial effective length of 13 cm, so with a maximum pos-
sible strain of 3.3%, the total operating range of motion
is 4.29 mm. Since the learned control policy is able to
reach its goal within a range of +0.5%, the error range
allowed is +£0.65 mm. Under these specified conditions,
the RL agent is executed for 100 episodes using specified
alternating goal strains of 2.7% and 0.1%, providing 50
episodes per goal. Each episode in this experiment

consists of 450 s worth of seeking a single goal, where
the RL agent is called every 15s. This provides 30 new
actions per episode for the learning module.

Two test cases are presented. Case 1 uses a goal of 2.7%
strain. This goal is chosen for experimentation because
it represents a partially actuated state for which the max-
imum strain of 3.3% falls outside of the allowed tolerance
range of +0.5%. This ensures that it cannot achieve the
goal by simply applying the maximum voltage available.
This goal is also of particular interest since it was previ-
ously used for temperature—strain space validation. Case
2 uses a goal strain of 0.1%. This goal is chosen because it
represents a state that is not quite on the boundary of the
system, but effectively is on the boundary because the
lower bound is encompassed by the tolerance range.
While it could achieve its goal by applying 0 V, it is not
limited to this action.

The temperature and strain time histories for Case 1
are shown in Figures 9 and 10. Figure 9 shows that the
required final temperatures for reaching the goal differ
depending upon the initial temperature and strain con-
ditions. This is due to the hysteretic nature of the tem-
perature—strain relationship. Figure 10 demonstrates
that the learned control policy is capable of bringing
an SMA wire specimen to the desired goal from various
initial strains. Initial voltages were applied before the
time history recording began so that the control policy
could be tested at several different initial strains. The
initial strains are 0.1%, 3.2%, 1.2%, and 2.7%. The
actual exploitation of the control policy began at
time = 0 s in each case, and the two horizontal lines rep-
resent the goal range of 2.7 +£0.5% strain. The initial
strains of 0.1% and 3.2% are chosen so that the control
policy could be tested from initial strains corresponding to
fully un-actuated and fully actuated states, respectively.
The initial strain of 1.2% is selected to test from an ini-
tially intermediate strain, and the goal strain of 2.7% is
also chosen as an initial strain to show that the agent can
learn how to stay within the specified range when the
specimen is there initially. As Figure 10 shows, the control
policy is successful in achieving its goal of 2.7 + 0.5% in all
four test cases. The voltages that the learned action-value
function commanded for each of these initial conditions
are displayed in Table 1. These values are the commanded
voltages for changing the SMA wire from each of these
initial strains to the goal strain of 2.7% in 15s.

The results for Case 1 demonstrate that this RL agent
can learn a voltage—strain SM A control policy for achiev-
ing multiple commanded intermediate strain changes.

The results for Case 2 are presented in Figures 11 and
12. Like Case 1, initial voltages were applied to reach
initial strain conditions, and the control policy exploita-
tion begins at time = 0 s. Figure 11 again demonstrates
that the final temperature values for reaching the strain
goal vary based on initial conditions. In Figure 12, the
horizontal line represents the upper bound of the
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Figure 9. Case 1 Temperature—time histories of learned policy, goal
strain = 2.7%.
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Figure 10. Case 1 strain—time histories of learned policy, goal
strain = 2.7%.

Table 1. Case 1: Commanded voltages, goal = 2.7%.
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Figure 11. Case 2 Temperature—time histories of learned policy,
goal strain = 0.1%.
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Figure 12. Case 2 strain—time histories of learned policy, goal
strain = 0.1%.

Table 2. Case 2: Commanded voltages, goal = 0.1%.

€ 0.001 0.012 0.027 0.032

€ 0.001 0.012 0.027 0.032

Vemd 2.38 1.96 2.66 2.66

Vemd 1.12 1.26 0 0

tolerance range, while the lower bound corresponds to a
strain of 0. The initial strains chosen for Case 2 were
0.1%, 3.2%, 1.5%, and 2.7%, which are nearly identical
to the initial strains chosen in Case 1. The 0.1% strain is
chosen because it demonstrates the ability of the system
to remain at the goal strain when already there, and
3.2% is selected because it is the other system boundary.
The other strains were chosen because they nearly match
the initial strains used in Case 1. Figure 12 shows that
for each of these initial strains, the control policy is able
to achieve its specified goal, but here it is accomplished
for the goal of 0.1 £0.5% strain. The voltages that the
learned action-value function commanded for each of
these initial conditions are displayed in Table 2. These
values are the commanded voltages for changing the
SMA wire from each of these initial strains to the goal
strain of 2.7% in 15 s.

The results for Case 2 demonstrate that the RL agent
can learn a voltage—strain SMA control policy for
achieving a near zero strain (0.1%) from multiple initial
intermediate strains.

CONCLUSIONS

This article developed a Sarsa-based reinforcement
Learning algorithm for learning a voltage—strain control
policy and experimentally validated it using a NiTi
shape memory alloy wire. This approach for learning a
control policy in voltage—strain space was simpler
than previous Reinforcement Learning approaches for
learning a control policy in temperature—strain space
because a separately determined mapping from voltage
to temperature is not needed. It is more accurate
because the voltage—strain space approach uses accurate
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voltage measurements, whereas the temperature—strain
approach uses inaccurate thermocouple measurements.
Additionally, the control policy in voltage-strain space
has the added benefit of being directly useful as a feed-
back control law for applications.

The learned voltage—strain space control policy per-
mits control in the interior points of the phase transfor-
mation process, not just the boundaries. Experimental
results presented in this article demonstrate the ability to
control a shape memory alloy specimen from arbitrary
initial strains ranging from zero to maximum, including
intermediate strains, to an arbitrary non-maximum
intermediate strain. Additionally, the same control
policy is capable of controlling the specimen from sim-
ilar arbitrary initial values of strain to zero strain.

It is concluded that the Sarsa-based Reinforcement
Learning algorithm developed in this article for learning
a voltage—strain control policy is a promising candidate
for synthesizing useful shape memory alloy actuator
feedback control laws.

ACKNOWLEDGEMENTS

This work was sponsored (in part) by the National
Science Foundation Graduate Research Fellowship
Program, and the Air Force Office of Scientific
Research, USAF, under grant/contract number
FA9550-08-1-0038. The technical monitor is Dr. Fariba
Fahroo. The views and conclusions contained herein are
those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of the National Science
Foundation, Air Force Office of Scientific Research, or
the U.S. Government. The authors would also like to
acknowledge Dimitris C. Lagoudas and Darren Hartl
for their insightful suggestions and comments.

REFERENCES

Bae, J.-S., Kyong, N.-H., Seigler, T.M. and Inman, D.J. 2005.
“Aeroelastic considerations on shape control of an Adaptive
Wing,” Journal of Intelligent Material Systems and Structures,
16:1051—1056.

Banks, H., Kurdila, A. and Webb, G. 1997. “Modeling and
Identification of Hysteresis in Active Material Actuators, Part
(II):  Convergent Approximations,” Journal of Intelligent
Material Systems and Structures, 8.

Barbarino, S., Ameduri, S., Lecce, L. and Concilio, A. 2009. “Wing

Shape Control through an Sma-based Device,” Journal of

Intelligent Material Systems and Structures, 20:283—296.

Bo, Z. and Lagoudas, D.C. 1999. “Thermomechanical Modeling of
polycrystalline SMAs Under Cyclic Loading, Part I-1V,”
International Journal of Engineering Science, 37.

Falk, F. 1989. “Pseudoelastic Stress Strain Curves of Polycrystalline
Shape Memory Alloys Calculated from Single Crystal Data,”
International Journal of Engineering Science, 27:277.

Haag, C., Tandale, M. and Valasek, J. 2005. “Characterization of
Shape Memory Alloy Behavior and Position Control Using
Reinforcement Learning,” ATAA Infotech@Aerospace Conference,
Arlington, VA, 26-29 September.

Kirkpatrick, K. and Valasek, J. 2009. “Reinforcement Learning for
Characterizing Hysteresis Behavior of Shape Memory Alloys,”
Journal — of  Aerospace  Computing,  Information,  and
Communication, 6:227-238. March.

Konidaris, G.D. and Hayes, G.M. 2005. ““An Architecture for Behavior-
based Reinforcement Learning,” Adaptive Behavior, 13:5-32.
Kudva, J.N. 2004. “Overview of the Darpa Smart Wing Project,”

Journal of Intelligent Material Systems and Structures, 15:261-267.

Lagoudas, D.C., Bo, Z. and Qidwai, M.A. 1996. “A Unified
Thermodynamic Constitutive Model for SMA and finite element
analysis of Active Metal Matrix Composites,” Mechanics of
Composite Materials and Structures, 3.

Lagoudas, D., Mayes, J. and Khan, M. 2001. “Simplified Shape
Memory Alloy (sma) Material Model for Vibration Isolation,”
Smart Structures and Materials Conference, Newport Beach,
CA, 5—-8 March.

Lagoudas, D.C. 2008. Shape Memory Alloys: Modeling and Engineering
Applications., Springer Science+Business Media, LLC.

Machado, L. 2007. “Shape Memory Alloys for Vibration Isolation
and Damping,” PhD thesis, Texas A&M University, December.

Mitchell, T.M. 1997. Machine Learning, The McGraw-Hill
Companies, Inc, Singapore.

Mavroidis, C., Pfeiffer, C. and Mosley, M. 1999. “Conventional
Actuators, Shape Memory Alloys, and Electrorheological
Fluids,” Automation, Miniature Robotics and Sensors for Non-
Destructive Testing and Evaluation, 10—-21. April.

Patoor, E., Eberhardt, A. and Berveiller, M. 1987. “Potential
Pseudoelastic et Plasticite de Transformation Martensitique Dans
les Mono-et Polycristaux Metalliques,” Acta Metall, 35:2779.

Russell, S. and Norvig, P. 2003. Artificial Intelligence: A Modern
Approach, Pearson Education, Inc, Upper Saddle River, New
Jersey.

Santamaria, J.C., Sutton, R.S. and Ram, A. 1997. “Experiments with
reinforcement learning in problems with continuous state and
action spaces,” Adaptive Behavior, 6:163—217.

Strelec, J.K., Lagoudas, D.C., Khan, M.A. and Yen, J. 2003. “Design
and Implementation of a Shape Memory Alloy Actuated
Reconfigurable airfoil,” Journal of Intelligent Material Systems
and Structures, 14:257-273.

Sutton, R. and Barto, A. 1998. Reinforcement Learning: An
Introduction, The MIT Press, Cambridge, MA.

Valasek, J., Tandale, M. and Rong, J. 2005. “A Reinforcement
Learning - Adaptive Control Architecture for Morphing,” Journal
of Aerospace Computing, Information, and Communication,
2:174—195.

Valasek, J., Doebbler, J., Tandale, M.D. and Meade, A.J. 2008.
“Improved Adaptive-reinforcement Learning Control for
Morphing Unmanned Air Vehicles,” [EEE Transactions on
Systems, Man, and Cybernetics: Part B, 38:1014—1020. August.

Varshavskaya, P., Kaelbling, L.P. and Rus, D. 2008. “Automated
Design of Adaptive Controllers for Modular Robots Using
Reinforcement Learning,” The International Journal of Robotics
Research, 27:505—-526.

Waram, T. 1993. Actuator Design Using Shape Memory Alloys,
Hamilton, Ontario.

Webb, G., Kurdila, A. and Lagoudas, D. 1998. ““Hysteresis modeling
of sma actuators for control applications,” Journal of Intelligent
Material Systems and Structures, 9:432—447.

Whiteson, S., Taylor, M.E. and Stone, P. 2007. ““Empirical Studies in
Action Selection with Reinforcement Learning,” Adaptive
Behavior, 15:33—50.

Downloaded from jim.sagepub.com at TEXAS A&M UNIV on September 19, 2011


http://jim.sagepub.com/

