

AEROSPACE ENGINEERING TEXAS A&M UNIVERSITY Vobialo Systems & Control Laborat

Flight Test Instrumentation System for Small UAS System Identification

Han-Hsun Lu

Joshua Harris Vinicius Goecks Ezekiel Bowden John Valasek Texas A&M University 2017 ICUAS Miami, FL June 16th 2017

AEROSPACE ENGINEERING TEXAS A&M UNIVERSITY Vehicle Systems & Control Laboratory

Outline

Motivation

System Identification

Observer Kalman-filter IDentification (OKID)

Flight Instrumentation

- Developmental Flight Test Instrumentation (DFTI)

Flight test results

- Conclusions
- Future work

Motivation - I NASA Learn-To-Fly

Real-Time System Identification and adaptive control

Approaching Self-Learning and Autonomously-Adapting Vehicles

- Morelli, Eugene A. "Real-Time Global Nonlinear Aerodynamic Modeling for Learn-To-Fly." (2016).

Motivation - II

- High frequency data is needed for system identification
- Common flight controllers do not provide full aircraft states and control measurements
- Modeling and control systems are often vehicle dependent and not easily portable

Previous Work

(2003) Online identification using OKID on aircrafts in nonlinear 6 DOF simulation

- Valasek, Chen. "Observer/Kalman filter identification for online system identification of aircraft." *Journal of Guidance, Control, Dynamics*
- (2015) UAS flight results with 5 hole probe measurements
 - Woodbury, Arthurs, Valasek "Flight Test Results of Observer/Kalman Filter Identication of the Pegasus Unmanned Vehicle," SciTech Conf.
- (2016) Pixhawk logging states at 50 Hz
 - Arthurs, Valasek, "Precision Onboard Small Sensor System for Unmanned Air Vehicle Testing and Control," SciTech Conf.

CENTER FOR AUTONOMOUS VEHICLES & SENSOR SYSTEMS

q (rad/s)

Objectives

- Develop a system with data acquisition rate of 100 Hz
- Real time full-state measurements onboard for identification without state estimations
- Control influence matrix represented as deflections, not PWM

Approach

- 1. Log aircraft states at a high rate (100 Hz)
- 2. Measure control deflections
- 3. Reliable excitation method capable of exciting all the dynamic modes
- 4. System should be modular for extensive capabilities
- 5. Easily portable between different vehicles

Introduction-System Identification

- Two methods to determine models of systems from experimental data:
 - Parameter Identification
 - System Identification OKID

Overview of SysID – ERA/OKID

- An extended version of Ho-Kalman system realization algorithm*
- Developed at NASA Langley Research Center
- Uses input and output measurement data to form the system matrices (A,B,C,D)
 - * (1965) Ho, B. L. and Kalman, R. E. Effective Construction of Linear State-Variable Models From Input/Output Data.

Observer/Kalman Filter Identification

- Non-parametric identification from input/output measurements
- Assume linear, discrete-time plant:

$$x_{k+1} = Ax_k + Bu_k$$
$$y_k = Cx_k + Du_k$$

Introduce observer G: $x_{k+1} = (A + GC)x_k + (B + GD)u_k - Gy_k = \overline{A}x_k + \overline{B}v_k$ $v_k = \begin{bmatrix} u_k \\ y_k \end{bmatrix}$

Rewriting and solving for y_k : $y_k = C\left(A^k x_0 + \sum_{i=0}^{k-1} \left(A^{k-i-1} B u_i\right)\right) + D u_k$

*Juang, J.-N., Applied System Identification, Prentice Hall, 1994, pp. 131-199

Observer/Kalman Filter Identification

• Observer Markov Parameters: $\overline{Y}_0 = D$

$$\overline{Y}_{k} = C\overline{A}^{p-1}\overline{B}$$

$$= \begin{bmatrix} C(A+GC)^{k-1}(B+GD) & -C(A+GC)^{k-1}G \end{bmatrix}$$

$$= \begin{bmatrix} \overline{Y}_{k}^{(1)} & -\overline{Y}_{k}^{(2)} \end{bmatrix}$$

System Markov Parameters:

$$Y_{k} = \overline{Y}_{k}^{(1)} + \sum_{i=1}^{k} \overline{Y}_{i}^{(2)} Y_{k-1}, k = 1, \dots, p$$
$$Y_{k} = \sum_{i=1}^{k} \overline{Y}_{i}^{(2)} Y_{k-1}, k = p+1, \dots, \infty$$
$$D = Y_{0} = \overline{Y}_{0}$$

ERA/OKID

Hankel Matrix

ERA/OKID

- Perform SVD on Hankel Matrix
 - Identified output matrix C
 - Identified of input matrix B
 - Identified A matrix

$$H(0) = \begin{bmatrix} P\Sigma^{1/2} \end{bmatrix} \begin{bmatrix} \Sigma^{1/2} Q^T \end{bmatrix}$$
$$\begin{bmatrix} C \\ CA \\ \vdots \\ CA^{\alpha - 1} \end{bmatrix} = \begin{bmatrix} P\Sigma^{1/2} \end{bmatrix}$$
$$\begin{bmatrix} B & AB & \cdots & A^{\beta - 1}B \end{bmatrix} = \begin{bmatrix} \Sigma^{1/2} Q^T \end{bmatrix}$$
$$H(0) = \begin{bmatrix} P\Sigma^{1/2} \end{bmatrix} \begin{bmatrix} \Sigma^{1/2} Q^T \end{bmatrix}$$

 $\mathbf{H}(1) = \left\lceil \mathbf{P} \boldsymbol{\Sigma}^{1/2} \right\rceil A \left\lceil \boldsymbol{\Sigma}^{1/2} \boldsymbol{Q}^T \right\rceil$

 $\mathbf{A} = \left[\Sigma^{-1/2} P^T \right] H(1) \left[Q \Sigma^{-1/2} \right]$

Mode Selection

- Quality indexes including
- Modal Controllability Index
- Modal Observability Index
- Mode Singular Values

$$MCI = 100 \cdot |B_{\rm m}|\max|B_{\rm m}|$$
$$MOI = 100 \cdot |C_{\rm m}|\max|C_{\rm m}|$$
$$\frac{\sqrt{|B_{\rm m}| \cdot |C_{\rm m}|}}{|1 - |\zeta||}$$
$$MSV = 100 \cdot \frac{\frac{\sqrt{|B_{\rm m}| \cdot |C_{\rm m}|}}{|1 - |\zeta||}}{\max\frac{\sqrt{|B_{\rm m}| \cdot |C_{\rm m}|}}{|1 - |\zeta||}}$$

System state-space models acquired Verify through quality indexes

Pappa, Richard S et. all. "Consistent-mode indicator for the eigensystem realization algorithm." (1993)

Vehicle Description

Measured States

- From INS
 - GPS
 - Quaternion
 - Body Axis rates/ angles
 - Lat/ Long/ Alt
- From Air data computer
 - True Airspeed
 - Angle of attack
 - Sideslip angle

Measured Control

- Aileron deflections
- Elevator deflections
- Rudder deflections
- Engine RPM

Hangar – 9 ¼ Scale PA – 18 Super Cub				
Wing Span	8.8 ft			
Empty Weight	16.6 lbs			
Loaded Weight	25 lbs			
Batteries	4S 10000mAhr LiPo Battery			
Motor	295V E-Flite Power 110 Brushless motor			
ESC	85 A HV			

AEROSPACE ENGINEERING TEXAS A&M UNIVERSITY Vehicle Systems & Control Laboratory

Developmental Flight Test Instrumentation System (DFTI)

Software

- Primarily developed for use with the BeagleBone Black single-board Linux computer
- C++11 written multithreading data logger
- Software open sourced and available at:
- J. Harris, V. G. Goecks, H.-H. Lu, and J. Valasek, "VSCL Developmental Flight Test Instrumentation," May 2017. [Online]. Available: https://doi.org/10.5281/zenodo.572272
- https://github.com/tamu-vscl/dfti

AEROSPACE ENGINEERING TEXAS A&M UNIVERSITY

Vehicle Systems & Control Laboratory

IMU

Power

Control Surface logger

Data Processor

Input Design

Doublets – two sided pulses

- amplitude chosen for good S/ N in time

Frequency sweep

continuous sinusoid with frequency increasing

Doublets are the most practical and efficient pilot input excitation

AEROSPACE ENGINEERING TEXAS A&M UNIVERSITY Vehicle Systems & Control Laboratory

Motivation

- System Identification
- Observer Kalman-filter Idendtification (OKID)

Flight Test Instrumentation

 Developmental Flight Test Instrumentation

Flight test results

Conclusions and future work

Flight results – Lat/D

24th April, 2017 - $V_{T_1} = 53$ ft/s , $\alpha_1 = 2.39^\circ$, $h_1 = 209$ ft

(βÌ		0.07918	-0.1425	-0.8387	-0.414	1	(β)		-0.002815	0.01296	
J	<i>p</i>	_	4.18	-7.098	-3.568	-2.693		p		-0.666	-0.2216	$\left(\int \delta_A \right)$
	r	-	3.444	4.548	-1.98	-0.8893		r	Т	0.2464	-0.5871	$\left(\delta_{R} \right)$
	ġĴ		-0.04679	0.9998	-0.03553	-0.02902		(ϕ)		-0.01386	-0.005222	

- Excitations

- Response

Flight results – Lat/D

Lateral/Directional Dynamic Modes

Mode	Spiral	Roll	Dutch Roll
Eigenvalue	-0.09	-1.5492	$-3.619 \pm j3.1821$
Damping Raio			0.7575
Natural Freq. (rad/s)			4.88
Time Const. (sec)	11.11	0.65	
MSV (%)	100.0	66.0	56.5
MCI (%)	9.0	55.2	100.0
MOI (%)	86.6	100.0	95.4
			Δ.

Lat/D Verification

Compare identified system model with different data set

-
$$V_{T_1} = 53 \text{ ft/s}$$
, $\alpha_1 = 3.1^\circ$,
 $h_1 = 324 \text{ ft}$

Flight results – Long

$$24^{\text{th}} \text{ April, 2017} - V_{T_1} = 58 \text{ ft/s}, \ \alpha_1 = 0.1^{\circ}, \ h_1 = 269 \text{ ft} \\ \begin{cases} \dot{V}_T \\ \dot{\alpha} \\ \dot{q} \\ \dot{\theta} \\ \dot{\theta} \\ \end{cases} = \begin{bmatrix} -0.4541 & -2.628 & 1.806 & -7.129 \\ -0.0851 & -2.468 & 1.788 & 0.1256 \\ 0.2701 & -5.163 & -7.527 & 1.255 \\ 0.2701 & -5.163 & -7.527 & 1.255 \\ 0 & -0.2657 & 0.9126 & 0.3046 \end{bmatrix} \begin{cases} V_T \\ \alpha \\ q \\ \theta \\ \end{pmatrix} + \begin{bmatrix} 0 & 0.02639 \\ 0 & -0.05085 \\ -0.0002 & -1.417 \\ 0 & -0.01782 \end{bmatrix} \begin{cases} \delta_T \\ \delta_E \end{cases}$$

- Excitations

- Response

Flight results – Long

Longitudinal Dynamic Modes				
Mode	Phugoid	Short Period		
Eigenvalue	$-4.6763 \pm j4.4511$	$-0.1328 \pm j0.4627$		
Damping Raio	0.2758	0.7243		
Natural Freq. (rad/s)	0.4838	6.4591		
MSV (%)	100.0	19.0		
MCI (%)	100.0	84.0		
MOI (%)	67.8	100.0		

Longitudinal Verification

- Compare identified system model with different data set
 - $V_{T_1} = 58 \text{ ft/s}$, $\alpha_1 = 0.1^{\circ}$, $h_1 = 269 \text{ ft}$

Conclusions

- System generates accurate LTI state-space models in desired form
 - Fast sampling captures all modes well and avoids aliasing
- DFTI was shown to work well for system identification
- Signal clipping was experienced in several occasions but did not impact quality of identified models
- The combined system is a promising candidate for online near real-time system identification and control design

Future Work

Auto-excitation to improve reliability of excitation quality

- Doublets
- Selected sine sweeps
- 3-2-1-1 excitation
- Online near real-time identification with human-in-the-loop notifications of identified model quality
 - "Online Near Real-Time System Identification of a SUAS" Submitted to SciTech 2018

- Reconfigurable control
 - Model predictive control should be implemented incorporating updated model
 - Model reference adaptive control

AEROSPACE ENGINEERING TEXAS A&M UNIVERSITY Vehicle Systems & Control Laboratory

Questions?

55

120 N1963R-