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Reinforcement Learning for control of dynamical systems is popular due to the ability
to learn control policies without requiring a model of the system being controlled. It
can be di�cult to learn ideal control policies because it is common to abstract out or
ignore completely the dynamics of the agents in the system. In this paper, Reinforcement
Learning-based algorithms are developed for learning agents’ time dependent dynamics
while also learning to control them. Three algorithms are introduced. Sampled-Data
Q-learning is an algorithm that learns the optimal sample time for controlling an agent
without a prior model. First-Order Dynamics Learning is an algorithm that determines the
proper time constants for agents known to have �rst-order dynamics, while Second-Order
Dynamics Learning is an algorithm for learning natural frequencies and damping ratios
of second-order systems. The algorithms are demonstrated with numerical simulation.
Results presented in this paper show that the algorithms are able to determine information
about the system dynamics without resorting to traditional system identi�cation.

I. Introduction

In recent years, Reinforcement Learning (RL) has been an extensively investigated area of research in
the �eld of Machine Learning. It has been a popular tool for solving problems such as dynamical system
control, gain scheduling, maze navigation, and game playing. There has been wide success in many of
the applications, but researchers have often encountered problems when casting the control of dynamical
systems as an RL problem. The state-to-action mapping provided by RL techniques makes the use for
control problems attractive, and this is especially the case with Q-learning due to its proven convergence to
optimality. RL methods like Q-learning are appealing because they can achieve this mapping experimentally
without the need of a model. Although this is indeed the case, implementing these in practice has proven
to be very di�cult.

Studying the problems associated with this implementation reveals that often the failure to implement RL
methods in dynamical systems are not caused but the basic approach of methods like Q-learning. Typically,
the problem is either a failure in properly representing the problem or inaccurate function approximation.
When choosing to implement the popular Watkins’ Q-learning in a dynamical system scenario, it is necessary
to realize that the algorithm does not explicitly account for time. Time dependency is often either overlooked
or handled outside of the learning process, but accounting for time in the selection of actions (or control) is
needed. For instance, when handling sampled-data systems, small changes to sample time can cause drastic
changes to the stability of the control policy determined.

One research area that has recently received a lot of attention has been the control of cooperative multi-
agent systems through the use of Q-learning-based algorithms. Learning to control multiple agents for the
purpose of cooperatively achieving a speci�ed goal is an appealing research topic with high complexity. Some
research in this area has involved comparing the e�ects using Q-learning-based methods to determine joint
action selection between di�erent agents to the learning of agent actions independently.1 Other research has
investigated stochastic game extensions to this and treated the system as non-cooperative by having agents
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consider only themselves with no knowledge of the existence of other agents.2 Systems of agents that need to
coordinate their actions without knowledge of each other’s actions has been determined to be an important
area of research for the general application to systems of agents that do not have the ability to communicate
with one another.3,4 Even so, other research has been conducted involving the improvement of Q-learning
approaches for determining joint actions through the use of Bayesian inference to estimate strategies.5

In most of the research scenarios discussed above, multiple agents are simulated in games that have
no dependence on time. Time-dependent agent dynamics cause a fundamental change to the system, and
considering the control of time dependencies in multi-agent systems has received little attention. This may
be due to the fact that it is di�cult to learn control policies for a single time-dependent agent using RL
approaches. To address this, a topic of research that needs to be investigated is the learning of an optimal
sample time for a sampled-data system. Controlling real continuous systems generally requires computer-
based control, so sampling of the continuous system is necessary. Without considering the sample time used,
problems arise in attempting to use a policy derived in simulation on an actual hardware experiment. For
this scenario, if a model of the dynamics exists it is trivial to determine the best sample time by classical
methods. However, here we consider the case where a model is not available and RL is being utilized for
its model-free approach. This requires some way to determine the optimal sample time without the use of a
model.

One more area of investigation that is needed for the learning of multi-agent system control policies is
to learn some approximation of the dynamics. The learning process does not explicitly account for agent
time dynamics, so that information is essentially abstracted out of learning. Since the main bene�t of
RL approaches like Q-learning is to learn a control policy without the need of a model, the bene�ts of
determining a model have been overlooked. It can be very useful for some knowledge of the dynamics to
inform the decisions made by the agents, and this is especially true in heterogeneous multi-agent systems.
A full model may not be necessary, but some approximation of the individual agent dynamics can be very
bene�cial for determining global behavior rules.

In this paper, RL-based control approaches are extended to systems with unknown time dynamics.
The scope of this paper is limited to the cases of simulated examples where the simulations have time
dynamics but the RL agent learning to control the system has no access to that information. The systems
considered are all sampled-data systems, and they will exhibit �rst- or second-order dynamics depending
upon the algorithm being investigated. Three algorithms are introduced. One is capable of determining
the optimal sample time for these sampled-data systems using RL-based algorithms while simultaneously
learning the control policy, and it is named Sampled-Data Q-learning (SDQL). The second is an RL-based
algorithm capable of learning some approximation of agent dynamics for a �rst-order system, and it is called
First-Order Dynamics Learning (FODL). The �nal algorithm is similar to the FODL algorithm and is for
second-order systems, called Second-Order Dynamics Learning (SODL). The end result of this research is
the ability to learn an optimal sample time for agents, an approximation of agents’ time dynamics, and
individual agent control policies. This collective result allows for the control of heterogeneous multi-agent
systems by means of hierarchical commands provided by a high-level agent with all of the knowledge learned
by these algorithms.

This paper is organized as follows. In Section II, the basics of Reinforcement Learning are discussed,
with an emphasis on Q-learning. Section III introduces the Sampled-Data Q-learning algorithm and in-
cludes simulation results to demonstrate it. The First- and Second-Order Dynamics Learning algorithms are
introduced in Section IV with accompanying results, and conclusions and open challenges are discussed in
Section V.

II. Q-learning

There are multiple classes of algorithms that fall within the de�nition of Reinforcement Learning. Cur-
rently, the RL algorithms that are most used in research are Temporal-Di�erence (TD) methods. TD methods
are actually a conceptual combination from two other classes of algorithms known as Dynamic Programming
(DP) and Monte Carlo.6 Like Monte Carlo, TD methods use experience through interaction with the system
to update the quality of the value function without the need of a model. Like DP, TD methods do not
have to wait until the end to improve the value function, but rather update it along the way. This improves
convergence time and also makes TD methods usable in online learning. In this section, the TD algorithm
known as Q-learning will be discussed, along with the limitations that lead to the development of extended
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Q-learning-based algorithms for the use of learning in dynamical sampled-data systems.
Of the various formulations of RL algorithms, Watkins’ Q-learning has been the most accepted and

utilized algorithm for its proven convergence to the optimal action-value function.6 Q-learning is a TD
method that learns the optimal action-value function in an o�-policy manner.7 This means that the policy
used during a learning episode is not necessarily the same as the one that is updated at each timestep. A
similar implementation that uses on-policy learning is known as Sarsa, and is often used in the same learning
situations as Q-learning.8,9 The Q-learning algorithm is based upon an action-value update rule that uses a
greedy policy to determine a predicted value for the state-action pair at the next (future) timestep.10,11 The
actual action selection may not be done using a greedy policy, and in fact it is typically better for optimality
to include some degree of exploration in the policy.12 The rule used for updating the action-value function
is as follows.

Q(s; a) Q(s; a) + �[r + max
a0

Q(s0; a0)�Q(s; a)] (1)

In Equation 1, Q is the action-value function, s is the state at the current timestep, a is the action
selected for the current timestep using the agent’s policy (e.g., "-greedy), � is the step-size parameter, r is
the reward received from the system, s0 is the future state (due to taking action a), a0 is the action that
would be taken using a greedy policy when in state s0, and  is the weight for the future value. The selection
of  a�ects convergence time, and it is always within the range (0,1). The value of  can either be kept
constant throughout learning, or it can be chosen to vary episodically so that later learning episodes value
the future prediction di�erently than early episodes. The value of � is always in the interval (0,1), and can
either be held constant or varied by some user-de�ned function. In some cases, � is designed to decrease
within an episode according to how often the agent revisits the same state, essentially punishing the agent
for repeating itself unnecessarily.

The update rule of Equation 1 is the backbone of the famous Watkins’ Q-learning algorithm. It is an
o�-policy TD algorithm with a user-determined policy for selecting actions at each timestep, but uses a
fully-greedy policy with the action-value function when updating the action-value function. Rather than
utilizing past information to perform this update, this algorithm uses the predicted future state-action pair
chosen greedily. The Watkins’ Q-learning algorithm is displayed in Algorithm 1.

Algorithm 1 Q-learning6

� Initialize Q(s,a) arbitrarily

� Repeat for each episode:

{ Initialize s

{ Repeat for each timestep:

� Choose a from s using policy derived from Q(s,a) (e.g., "-Greedy)
� Take action a, observe r, s0

� Q(s,a)  Q(s,a) + � [ r +  maxa0 Q(s0,a0) - Q(s,a) ]
� s  s0

{ Until s is terminal

The policy for action selection has a drastic e�ect on the convergence of the Q-learning algorithm.
Some balance of exploration and exploitation is needed to properly learn the full state-space and guarantee
convergence to the optimal policy. An "-greedy policy uses a user-de�ned probability, ", that determines
whether to choose actions randomly or according to the action-value function each time a new action must
be taken. This speeds up the convergence time by reinforcing paths that have already been designated either
good or bad while still allowing for new paths to be explored for optimality.13 In the early episodes the
agent is required to explore due to lack of knowledge, regardless of the value assigned to ". This "-greedy
policy is used as the action selection method for Q-learning in this paper.
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III. Sampled-Data Q-learning

When Algorithm 1 is used in dynamical systems, the problem of handling time-dependencies arises.
Because it is much faster (and safer) to perform the learning in a computer simulation rather than online
with a hardware system, researchers often turn to using dynamics models. The issue of ensuring an accurate
model is obvious, but it is often overlooked that using the �nal control policy on a hardware model results
in a sampled-data system. The control policy is handled using a discrete computer, but the policy is learned
assuming continuous dynamics. In some cases, the user realizes this and assumes a sampled-data system in
the simulated learning, but the Q-learning algorithm will converge to a policy that assumes the same sample
time will always be used and that the chosen sample time is best. Here, an attempt to overcome this issue
is addressed by wrapping the sample time into the learning process.

A. Sampled-Data Q-learning Algorithm

Incorporating the sample time, denoted T , into the learning process requires determining the value of in-
dividual sample times without adversely a�ecting the stability of the system during an episode. It would
therefore be wise to not allow a sample time to change during a single episode. However, to determine
optimal action-value functions for a range of sample times requires incorporating it into the state-space. It is
therefore necessary to append the state-space with T while not allowing it to be a�ected by the action-space.

This gives rise to the question of how a particular sample time is to be selected when it cannot be
a�ected by the action-space. It is necessary that a value be associated with each possible selection of T ,
but T must be held constant throughout an episode. It is therefore proposed that a state-value function for
T be determined using Monte Carlo-based learning.6 The value function can be updated according to an
every-visit Monte Carlo method, shown in Equation 2.

VT (T ) VT (T ) + �(R� VT (T )) (2)

This update rule will be the basis for Sampled-Data Q-learning. At the beginning of each episode, the
sample time value-function, VT , can be used to select T for the episode according to a user-de�ned policy.
The sample time is appended to the system state vector, s, so that the normal Q-learning update rule will
determine separate control policies according to di�erent values of T . When the reward for a given timestep
is determined, it is used to update both Q, and the total rewards for the episode are updated. At the end
of the episode, VT is updated by using the average return, R. This causes VT to be updated such that
episodes which experience more positive rewards than negative rewards result in the value associated with
that particular T increasing. Likewise, when an episode experiences more negative rewards than positive,
the total value for T after the episode ends will have decreased. Using this new sampled-data value function
and update rule, the Sampled-Data Q-learning algorithm becomes as shown in Algorithm 2.

B. SDQL Results

For the system described above, a single agent was simulated as a robot that translates forward with a
constant speed and rotates the heading angle  to change direction. The rotational dynamics are described
as a �rst-order di�erential equation with time constant � . The environment the robot is allowed to traverse
is a 20m by 20m square with the origin at the center. The governing equations of motion are shown in
Equations 3-5, where the subscript c denotes the commanded value.

_x = V cos (3)
_y = V sin (4)
_ = ( c �  )��1 (5)

At each timestep, the learner evaluates the current state and chooses the appropriate action based on
an "-greedy policy in a Q-learning scheme. The possible actions are rotate clockwise (�� ), no rotation
(� = 0), and rotate counterclockwise(+� ). At each T , the robot is required to take a new action, which
corresponds to a new commanded next state. The commanded next action occurs in intervals of 45 degrees.
The action-space is shown in Equation 6.
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Algorithm 2 Sampled-Data Q-learning (SDQL)

� Initialize Q(~s,a) arbitrarily

� Initialize VT (T ) arbitrarily

� Repeat for each episode:

{ Choose T using policy derived from VT (T ) (e.g., "-Greedy)

{ Initialize R = 0

{ Initialize s, initialize ~s by appending T to s

{ Repeat for each sample timestep, T :

� Choose a from ~s using policy derived from Q(~s,a) (e.g., "-Greedy)
� Take action a, observe r, ~s0

� Q(~s,a)  Q(~s,a) + � [ r +  maxa0 Q(~s0,a0) - Q(~s,a) ]
� ~s  ~s0

{ Until ~s is terminal

{ R = average(r)

{ VT (T )  VT (T ) + � [ R - VT (T ) ]

a 2 A = [ �45� 0� +45� ] (6)

After simulating this problem using the SDQL algorithm, the result is a determined best sample time
and a control policy based on that sample time. The values for the individual sample times after 10,000
learning episodes are shown in Table 1.

Table 1. SDQL Robot Result

T (sec) VT

0:01 29:1
0:02 29:9
0:03 2:4
0:04 42:9
0:05 51:4
0:06 73:4
0:07 2271:8
0:08 14:7
0:09 29:2
0:10 120:8

The control policy has the ability to control the robot to move from randomly initialized points to the
goal within a tolerance of �1m. The sample time with the maximum value determined by VT of T = 0:07
sec is in this simulation of the resulting Q function. Figures 1-6 demonstrate the ability to control the robot
to the goal using this learned function for the determined sample time.

Figures 1-3 show that the robot is able to guide itself to the goal from an initial point in quadrant 1. The
state time history shown in Figure 2 shows that the robot is able to guide itself there in under 8 seconds of
simulated real-time. The commanded heading angle changes at each T = 0:07 sec are shown in Figure 3.

For further demonstration of the ability to control the robot, an initial condition beginning in quadrant
3 was tested. These results are shown in Figures 4-6. Figure 5 shows that the robot is able to reach the goal
in this case in approximately 15 seconds, and the commanded heading angle history is shown in Figure 6.
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Figure 1. Simulation of Robot - Q1 Initial Condition

Figure 2. State History of Robot - Q1 Initial Condition

IV. System Dynamics Approximation

When using Q-learning to determine a control policy for dynamical systems, the bene�t of not needing to
have a model of the dynamics can lead to neglecting the dynamics completely. Learning a control policy for
these systems is necessary, but often it is desired to also determine some approximation of the dynamics. This
is especially important when dealing with the control of heterogeneous multi-agent systems since coordinating
the agents requires knowing how the individual agents respond di�erently in time to similar action inputs.

A. First-Order Dynamics Learning

The simplest agent dynamics to represent are �rst-order dynamics. In a stable �rst-order system, the
dynamics are described by the di�erential equation shown in Equation 7. Given the command value sc, the
time constant � is needed to fully describe this di�erential equation.

� _s+ s = sc (7)

The solution to this ODE is shown in Equation 8. This solution can be used to determine the next state,
but � is required to do so. This makes learning an approximate time constant all that is needed to determine
the time behavior of the agent. Given the current state, s, the predicted next state, s�, can be approximated
using the current guess of the time constant, � , and the sample time period, T , according to Equation 8.

s� = se�T=� + (1� e�T=� )sc (8)

6 of 13

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 J

oh
n 

V
al

as
ek

 o
n 

Fe
br

ua
ry

 1
0,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

87
5 

http://arc.aiaa.org/action/showImage?doi=10.2514/6.2013-875&iName=master.img-000.jpg&w=233&h=161
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2013-875&iName=master.img-001.jpg&w=233&h=162


Figure 3. Command History of Robot - Q1 Initial Condition

Figure 4. Simulation of Robot - Q3 Initial Condition

Equation 8 can be used to approximate a state transition for a single 1-dimensional state. Learning to
approximate the time constant requires determining a reward that is a function of the current estimate of the
sample time. By estimating the next state using Equation 8 and the current estimate of the time constant,
the reward can be shaped by the error between the measured true next state and the estimated next state.
The reward function used is shown in Equation 9.

r = jjs� � s0jj2 (9)

If more than one state dimension is to be approximated, multiple time constants would be needed. For
instance, if this method were applied to a robot traversing a 2-D space with �rst-order dynamics in forward
translation and rotation, one might want to know the state transition dynamics of both �forward and �rotate
independently as they would most likely have di�erent dynamics. Time constants for each state-action pair
would be determined based on whether the robot were moving forward or rotating. To learn a time constant,
a Monte Carlo learning formulation similar to the SDQL algorithm can be used. Algorithm 3 can shows how
this can be accomplished.14

Algorithm 3 was used for the same example shown in Section III.B. After the 10,000 learning episodes
completed, the FODL algorithm was able to successfully converge to the proper value of the time constant
of � = 0:2 sec. Table 2 shows the V1 values associated with each time constant, � .

Over the course of the 10,000 learning episodes, the value associated with � evolved as shown in Figure 7.
As can be seen, the value associated with � = 0:2 became the maximum value early in the learning process.
As learning episodes continue, the value function reinforces this as the best estimate of the time constant.
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Figure 5. State History of Robot - Q3 Initial Condition

Figure 6. Command History of Robot - Q3 Initial Condition

B. Second-Order Dynamics Learning

In general, real world systems are more prone to exhibit second-order behavior rather than �rst-order.
Second-order systems are the simplest systems that exhibit overshoot and oscillations, so higher-order systems
can be approximated using second-order models.15 It is therefore necessary to learn approximate models
of second-order systems to approximate any systems that are higher than �rst-order. The second-order
dynamics can be described by Equation 10.

d2s

dt2
+ 2�!n

ds

dt
+ !2

ns = !2
nsc (10)

To approximate a second-order system requires determining 2 parameters: natural frequency and damping
ratio. The learning framework used to determine these parameters is the same as for the �rst-order case, but
the value function and the state approximation equations are di�erent. The value function, here called V2, is
a function of the frequency and damping ratio. The state prediction equation is the solution to Equation 10
after a time period of T . This solution is dependent on the current approximation of damping ratio. For the
case of � = 0, the solution is as shown in Equation 11.

s� = sc +
_s
!n

sin(!nT ) + (s� sc) cos(!nT ) (11)

For the case of 0 < � < 1, the solution is as shown in Equation 12.
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Algorithm 3 First-Order Dynamics Learning (FODL)

� Determine T and Q(s,a) for system (e.g., Sampled-Data Q-learning)

� Initialize V1(s,a,�) arbitrarily

� Repeat for each episode:

{ Initialize s, append T to s

{ Repeat for each timestep:

� Choose a from s using greedy policy derived with Q(s,a)
� Choose � using policy derived from V1(s,a,�) (e.g., "-Greedy)
� Predict next state, s�, with s,a, and � using �rst-order approximations
� Take action a, observe actual next state, s0

� Observe r shaped from observed s0 and predicted s�

� V1(s,a,�)  V1(s,a,�) + � [ r - V1(s,a,�) ]
� s  s0

{ Until s is terminal

Figure 7. Time Constant Value History

s� = sc +
�p

1� �2
e��!nT

�
s� sc +

_s
�!n

�
sin(!nT

p
1� �2) (12)

+e��!nT (s� sc) cos(!nT
p

1� �2)

For the case of � = 1, the solution is as shown in Equation 13.

s� = sc + (s� sc)e�!nT + ( _s+ !ns� !nsc)Te�!nT (13)

And for the case of � > 1, the solution is as shown in Equation 14.
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Table 2. FODL Robot Value Function

�(sec) V1

0:1 �1:79� 104

0:2 �0:65� 104

0:3 �1:12� 104

0:4 �1:44� 104

0:5 �1:49� 104

0:6 �1:68� 104

0:7 �1:75� 104

0:8 �1:86� 104

0:9 �1:94� 104

1:0 �2:03� 104

1:1 �2:05� 104

1:2 �2:03� 104

1:3 �2:07� 104

1:4 �2:26� 104

1:5 �2:22� 104

1:6 �2:14� 104

1:7 �2:11� 104

1:8 �2:27� 104

1:9 �2:19� 104

2:0 �2:19� 104

s� = sc +
�

_s+ (2�!n � z1)s� scz2
z2 � z1

�
e�z1T (14)

�
�

_s+ (2�!n + z2)s� scz1
z2 � z1

�
e�z2T

where

z1 = !n(� �
p
�2 � 1)

z2 = !n(� +
p
�2 � 1)

To learn the second-order parameters, the FODL algorithm can be adjusted for learning the natural
frequency and damping ratio rather than the time constant. This alternate version of dynamics learning,
called Second-Order Dynamics Learning, is shown in Algorithm 4.

To demonstrate the SODL algorithm, the robot example from before was altered to have second-order
dynamics in the heading angle equation of motion. For this example, the natural frequency of the robot
heading angle was set to !n = 6 rad/sec and the damping ratio is � = 0:8. After 10,000 episodes of learning
using Algorithm 4, the value of V2 determined a maximum value associated with the correct frequency and
damping ratio. Table 3 shows the �nal values, and they are plotted in Figure 8.

The way that the V2 function is formulated implies that the value determined is for the combination of
the variables ! and � rather than designating values for each separately. This is done because it is both of
these variables together that determines the behavior of a system, and not either one separately. However,
if one were to want to see how they are valued individually then the average values can be determined. If
the value function entries for each instance of a particular ! are averaged together, an estimate of the value
for that frequency is determined. Likewise, the same can be done for the damping ratio. Figures 9-10 show
how the average values for the individual parameters evolve over time.
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Algorithm 4 Second-Order Dynamics Learning (SODL)

� Determine T and Q(s,a) for system (e.g., Sampled-Data Q-learning)

� Initialize V2(s,a,!n,�) arbitrarily

� Repeat for each episode:

{ Initialize s, append T to s

{ Repeat for each timestep:

� Choose a from s using greedy policy derived with Q(s,a)
� Choose !n and � using policy derived from V2(s,a,!n,�) (e.g., "-Greedy)
� Predict next state s� with s, a, !n, and � using �-dependent solution
� Take action a, observe actual next state s0

� Observe r shaped from observed s0 and predicted s�

� V2(s,a,!n,�)  V2(s,a,!n,�) + � [ r - V2(s,a,!n,�) ]
� s  s0

{ Until s is terminal

Table 3. V2 after 10,000 Episodes

! = 2 ! = 4 ! = 6 ! = 8 ! = 10
� = 0:4 �3220 �3107 �2412 �2671 �5130
� = 0:8 �3450 �2610 �1466 �2606 �4110
� = 1:2 �3283 �2883 �2393 �2323 �4092
� = 1:6 �3008 �2855 �3180 �2940 �3155
� = 2:0 �3240 �3602 �2795 �2576 �3484

V. Conclusions and Open Challenges

The work presented in this paper has shown that Reinforcement Learning-based techniques can be
adapted to not only learn control policies for agents, but also learn an approximation of the agents’ dy-
namics. Several conclusions can be drawn from these results. The Sampled-Data Q-learning algorithm is
capable of determining longer sample times that still allow for successful control of the agent. The First-Order
Dynamics Learning algorithm is capable of determining the time constants that best model the dynamics
of the states for an individual agent with �rst-order dynamics. The Second-Order Dynamics Learning algo-
rithm is capable of determining the best combination of natural frequency and damping ratio to model the
second-order dynamics of the states for an agent.

There are a number of challenges for future research e�orts. First, after learning the dynamics of agents it
can be shown that in a hierarchical multiagent system the supervisory agents can use the dynamics informa-
tion to determine commands to lower-level agents. Adaptation of these algorithms to stochastic systems is
also possible. Another open problem is determining a means to either demonstrate the Second-Order Dynam-
ics Learning algorithm’s capability to approximate higher-order systems, or investigate alternate algorithms
for approximating higher-order dynamics.
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Figure 8. V2 after 10,000 Episodes

Figure 9. Natural Frequency Value History
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