Morphing Airfoils with Four Morphing Parameters

Amanda Lampton, Adam Niksch, John Valasek

Aerospace Engineering Department
Texas A&M University

AIAA Guidance, Navigation, and Control Conference and Exhibit
18-21 August 2008
Honolulu, HI
Outline

- Morphing Air Vehicles
- Q-Learning
- Morphing Airfoil
- Results
- Conclusions
- Challenges
Morphing Aircraft

- Mutli-role platform
- Changes state substantially
 - Adapt to diverse mission profiles
- Provides superior system capability only possible with reconfiguration
- Geometric changes on the order of 50%

NextGen & Barron Associates
How to Achieve Morphing?

- Historically
 - Variable geometry
 - e.g. B-1 Lancer and Grumman F-14 Tomcat
- Traditional
 - Design set of configurations
 - Design control laws from one to another
 - Or use morphing in lieu of control effectors
- Non-traditional
 - Use machine learning
 - Learns most configurations
 - Learns path from one to another
Previous Morphing Research

Cornell (collaborator)
- Garcia & Lipson
 - Morphing dynamical model and simulation that incorporates aerodynamic and structural effects
 - Validated with experimental data
 - Basic morphing parameters (incidence angle, dihedral angle)

Maryland
- Hubbard
 - Actuating a flapping wing structure with SMA’s
 - Structure, material, distribution of actuators

Florida
- Lind
 - Morphing flight demonstrator vehicle
 - Basic morphing parameters (dihedral angle, sweep angle)
 - H_∞ control
Previous Morphing Research

at Texas A&M University

- **Smart Aircraft**
 - 2 independent morphing degrees-of-freedom
 - Actor-critic, then Q-learning
 - Function Approximation

- **Morphing Airfoil**
 - 2 interdependent morphing degrees-of-freedom
 - Goal based on aerodynamic and structural requirements
 - Q-learning

- **Morphing Wing**
 - In development
Research Overview

- **Approach**
 - Reinforcement Learning

- **Key Issue**
 - 4 morphing parameters

- **Solution**
 - Modify discretization and reward function to promote good convergence

- **Benefit**
 - Important step to learning shape changing of full morphing aircraft
Scope

- Airfoil
- 4 Morphing Degrees-of-Freedom
 - \rightarrow 4 learning states
- CFD Model
 - Doublet panel method
- Q-learning
- MatLab R2007b
- Monte Carlo Success Rate
- Requirement Performance
Reinforcement Learning

- Reinforcement Learning Problem
 - Agent interacts with environment and makes decisions
 - Environment states, s
 - Possible action, a
 - Future state, s'
 - Reward, r
 - Track previous states, or
 - Retain current state information only
 - Markov Decision Process

- Generate policy
 - Mapping of states to “best possible” actions
 $\pi : S \rightarrow A$
Q-Learning

- Off-policy Method
 - Learned action-value function, Q, directly approximates the optimal solution, Q^*
 - Independent of the policy being followed

 $$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r_{t+1} + \gamma \max_a Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right]$$

- Policy determines state-action pairs
- Convergence to optimal behavior
 - Continual update of pairs
Q-Learning Algorithm - Pseudocode

Q-Learning()
Initialize $Q(s,a)$ arbitrarily
Repeat (for each episode):
 Initialize s
 Repeat (for each step of episode):
 Choose a from s using policy derived from $Q(s,a)$
 // (e.g., ϵ-greedy policy)
 Take action a, observe r, s'
 $Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_a Q(s',a') - Q(s,a)]$
 $s \leftarrow s'$
 until s is terminal
return $Q(s,a)$
State Space Discretization

- Challenging to Learn on Continuous Domain
- Common Solution – Discretizing Action and/or State Space
 - Reduces space to a finite number of state-action pairs the agent must visit
- “Curse of Dimensionality”
 - Number of state-action pairs increases exponentially as the number of state variables increase
Pseudogrid for Learning

\[x_2 \]

\[x_1 \]

\[h_{x_2} \]

\[h_{x_2} \]

\[h_{x_2} \]

\[h_{x_2} \]

\[h_{x_1} \]

\[h_{x_1} \]

\[h_{x_1} \]

\[h_{x_1} \]
4 dof Morphing Airfoil

- Morphing Parameters
 - Thickness
 - Camber
 - Location of maximum camber
 - Airfoil angle-of-attack

- Goals
 - $c_l \geq 0.4$
 - $c_l = 0.0 \pm 0.05$
 - $c_l = 0.2 \pm 0.05$
 - $c_l = -0.2 \pm 0.05$

- Airfoil must “fly” through a series of flight conditions that require one of the above goals.
 - 3 examples with different initial conditions
Problem Setup

- 10000 episodes
- 1000 action steps allowed per episode
- ‘Flight’ simulation
 - 200 steps long
 - Goal changes every 50 steps

Photo by Russ Hansen
Monte Carlo Simulations

- Test Each Saved Action-Value Function
- 1000 Trials per Function
- Policy:
 - Probability of random action: 5%
 - Probability of greedy action: 95%

<table>
<thead>
<tr>
<th>State</th>
<th>h_{x_i}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Camber (%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Location of Max Camber</td>
<td>0.1</td>
</tr>
<tr>
<td>Angle-of-attack (deg)</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Monte Carlo Results

a) $c_l \geq 0.4$

b) $c_l = 0.0 \pm 0.05$

c) $c_l = -0.2 \pm 0.05$

d) $c_l = 0.2 \pm 0.05$
4 dof Morphing Airfoil: Lift Coefficient Goals
4 dof Morphing Airfoil: States
Conclusions

- 92% - 96% success rate for all goals
- Discretizing state space is a promising candidate for handling inherently continuous state space of morphing airfoil problem
- Changes in camber and angle-of-attack dominate agent’s efforts
 - Can reduce complexity of problem by setting the other states to constant values
Challenges and Open Problems

- Model Complexity
 - Morphing wing
- SMA Dynamics and Control Policy
- Adaptive-Reinforcement Learning Control
Acknowledgement

This work was sponsored (in part) by the National Science Foundation Graduate Student Research Fellowship.

This work was sponsored (in part) by the Air Force Office of Scientific Research, USAF, under grant/contract number FA9550-08-1-0038. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government."
Questions?
V^\pi (s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^\pi (s')