Digital Autoland Control Laws using Direct Digital Design and Quantitative Feedback Theory

Tom Wagner and Dr. John Valasek

Texas A&M University

AIAA Guidance, Navigation, and Control Conference
23 August 2006
Outline

- Introduction
- Problem Definition
- Research Objectives
- Aircraft Model
- Digital Controller Synthesis
- Simulation Examples
- Conclusions and Future Work
Introduction

- **Why Autoland?**
 - Landing is most difficult phase of flight
 - Most UAV damage is caused by human errors during takeoff and landing

- **Current Autoland Systems**
 - Small/Micro UAVs
 - Large UAVs

- **Proportional-Integral (PI) Controller**
 - Performance, robustness
 - Limited instrumentation
 - Simple and effective

- **Quantitative Feedback Theory (QFT) Controller**
 - Offers robust performance amidst structured model uncertainties
 - Limited instrumentation
 - Controller limitations are obvious early is design process
Problem Definition

- **Approach**
 - Localizer Tracker
 - Glideslope Tracker
 - Airspeed Command and Hold

- **Flare**
 - Airspeed Command and Hold
 - Automatic Flare

\[h = h_{\text{flare}} e^{\frac{1}{\tau}} \]
\[\tau = 1.99 \text{ sec} \]
\[h_{\text{flare}} = 17.47 \text{ ft} \]
Research Objectives and Assumptions

- Develop an approach and automatic landing controller that:
 - Works with existing approach architecture (ILS CAT III)
 - Is easily adaptable to other vehicle platforms
 - Provides good performance to prevent damage to the aircraft
 - Is robust to model uncertainties and external disturbances such as wind and turbulence

- Assumptions
 - Precision guidance is available to the flare height
 - Aircraft is equipped with radar altimeter for precision height information
 - Moderate turbulence will be worst encountered
 - Noise not included on sensors
 - Faults and failures not encountered
Aircraft Model

- **Rockwell Commander 700**
 - Assume dynamics similar to a medium size UAV
 - Simulated in Texas A&M Engineering Flight Simulator
 - Fixed base simulator
 - Real-time, high fidelity, 6 DOF nonlinear simulator
- Control surface actuators modeled by first order transfer function with a 0.1 sec time constant
- Linear system identification used to generate non-parametric state-space models
Aircraft Model

- **Model Uncertainties**
 - Due to modeling limitations
 - Added to select stability derivatives

Lateral/Directional

<table>
<thead>
<tr>
<th>Derivative</th>
<th>Importance</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{y\beta}$</td>
<td>7</td>
<td>±20 %</td>
</tr>
<tr>
<td>$C_{i\beta}$</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>$C_{n\beta}$</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_{yp}</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>C_{lp}</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>C_{np}</td>
<td>8</td>
<td>90</td>
</tr>
<tr>
<td>C_{yr}</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>C_{ir}</td>
<td>7</td>
<td>40</td>
</tr>
<tr>
<td>C_{nr}</td>
<td>9</td>
<td>25</td>
</tr>
<tr>
<td>$C_{i\delta a}$</td>
<td>10</td>
<td>25</td>
</tr>
</tbody>
</table>

Longitudinal

<table>
<thead>
<tr>
<th>Derivative</th>
<th>Importance</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{Le}</td>
<td>10</td>
<td>±25 %</td>
</tr>
<tr>
<td>C_{Da}</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>C_{ma}</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>C_{Lu}</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>C_{Du}</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>C_{mu}</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>C_{Lq}</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>C_{Dq}</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>C_{mq}</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>$C_{L\delta c}$</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>$C_{D\delta r}$</td>
<td>10</td>
<td>25</td>
</tr>
</tbody>
</table>
Digital Controller Synthesis

- Sample frequency of 10 Hz determined to give:
 - Good performance
 - Prevent aliasing
 - Prevent processor overload

- Proportional-Integral (PI) Controller
 - Gains chosen using z-plane root locus
 - Good performance
 - Robustness (6 dB gain margin, 45 deg phase margin)
 - Avoid excessive position and rates

- Quantitative Feedback Theory (QFT) Controller
 - Plant templates define region of uncertainty
 - Stability bounds and tracking bounds
 - Controller synthesis
 - Pre-filter synthesis
QFT Previous Work

- Bossert, 1994 describes a pitch attitude command and hold for a business jet and fighter
- Wu, et. al, 1998 documents the design of a lateral/directional controller
- Sheldon, et. al, 1994 describes the development and flight test of a small UAV inner-loop controller
- Horowitz, et. al, 1985 documents a full envelope flight control system for the F-16
- Most of the research in QFT has focused on inner-loop control
Digital Controller Synthesis

- QFT Controller Synthesis – Pitch Angle Command and Hold
 - Plant templates define region of uncertainty for each frequency
 - Six frequencies chosen: \(\omega = 0.1, 1, 2, 5, 15, 30 \) rad/sec
 - Stability bounds chosen for:
 - GM = 5.3 dB
 - PM = 49 deg
 - Tracking bounds chosen for:
 - 2 sec < \(t_r \) < 5 sec
 - PO < 20 %
Digital Controller Synthesis

- QFT Controller Synthesis – Pitch Angle Command and Hold
- Controller Design
 - Without Controller
 - With Controller
 \[G(z) = \frac{0.853(z - 0.958)(z - 0.955)}{(z - 1)(z - 0.776)} \]
Digital Controller Synthesis

- QFT Controller Synthesis – Pitch Angle Command and Hold
- Pre-Filter Design

- Without Pre-filter

- With Pre-filter

\[F(z) = \frac{0.189(z - 0.543)}{(z - 0.913)} \]
Simulation Examples

- **Localizer Tracker**
 - **Initial Conditions**
 - 45 deg intercept angle
 - 6 nm from runway threshold
 - \(U_1 = 151.0 \text{ ft/sec (90 kts)} \)

- **Requirements**
 - \(d_{cross} < 27 \text{ ft} \)
 - \(\dot{\delta}_a < 15 \text{ deg/sec} \)
 - \(\delta_a < 10 \text{ deg} \)

![Graphs showing simulation examples for Localizer Tracker and Requirements with PI and QFT controllers.](Image)
Simulation Examples

- **Glideslope Tracker**
 - **Initial Conditions**
 - 4 nm from runway threshold
 - Below vertical beam
 - $U_1 = 151.0$ ft/sec (90 kts)
 - **Requirements**
 - $|h_{error}| < 5$ ft
 - $\dot{\delta}_e < 15$ deg/sec
 - $\delta_e < 10$ deg
 - $\dot{T} < 10$ %/sec

- **PI**
- **QFT**
Simulation Examples

- **Automatic Flare**
 - Initial Conditions
 \[h_{\text{flare}} = 17.47 \text{ ft} \]
 \[\dot{h} = -8.78 \text{ ft/sec} \approx -526.8 \text{ ft/min} \]
 - Requirements
 \[V_{S_{TD}} > -6 \text{ ft/sec} \quad \delta_e < 10 \text{ deg} \]
 \[d_{\text{flare}} < 1,000 \text{ ft} \quad \dot{\delta}_e < 15 \text{ deg/sec} \]

- **PI**
 - ALT (ft)
 - VS (ft/sec)
 - \(\delta_e \) (deg)
 - \(\dot{\delta}_e \) (deg/sec)

- **QFT**
 - ALT (ft)
 - VS (ft/sec)
 - \(\delta_e \) (deg)
 - \(\dot{\delta}_e \) (deg/sec)
Simulation Examples

- Turbulence Robustness
- Localizer

<table>
<thead>
<tr>
<th></th>
<th>PI</th>
<th>QFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Successful (%)</td>
<td>95.6</td>
<td>96.2</td>
</tr>
<tr>
<td>d_{cross} Average (ft)</td>
<td>-4.35</td>
<td>-1.33</td>
</tr>
<tr>
<td>d_{cross} Standard Deviation (ft)</td>
<td>10.83</td>
<td>11.05</td>
</tr>
</tbody>
</table>

- Glideslope

<table>
<thead>
<tr>
<th></th>
<th>PI</th>
<th>QFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Successful (%)</td>
<td>100</td>
<td>98.4</td>
</tr>
<tr>
<td>ALT_{error} Average (ft)</td>
<td>0.5</td>
<td>0.88</td>
</tr>
<tr>
<td>ALT_{error} Standard Deviation (ft)</td>
<td>0.73</td>
<td>1.22</td>
</tr>
</tbody>
</table>
Simulation Examples

- Turbulence Robustness
- Autoflare

<table>
<thead>
<tr>
<th></th>
<th>PI</th>
<th>QFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Landings (%)</td>
<td>100</td>
<td>99.6</td>
</tr>
<tr>
<td>Hard Landings (%)</td>
<td>0</td>
<td>0.4</td>
</tr>
<tr>
<td>VS_{TD} Average (ft/sec)</td>
<td>-0.27</td>
<td>-0.52</td>
</tr>
<tr>
<td>VS_{TD} Standard Deviation (ft/sec)</td>
<td>0.12</td>
<td>0.91</td>
</tr>
<tr>
<td>d_{flare} Average (ft)</td>
<td>728</td>
<td>669</td>
</tr>
<tr>
<td>d_{flare} Standard Deviation (ft)</td>
<td>82</td>
<td>223</td>
</tr>
<tr>
<td>θ_{TD} Average (deg)</td>
<td>0.45</td>
<td>0.08</td>
</tr>
<tr>
<td>θ_{TD} Standard Deviation (deg)</td>
<td>0.36</td>
<td>0.93</td>
</tr>
</tbody>
</table>

PI:

QFT:
Simulation Examples

- Model Robustness
 - Localizer

<table>
<thead>
<tr>
<th></th>
<th>Turbulence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PI</td>
</tr>
<tr>
<td>Percent Successful (%)</td>
<td>14</td>
</tr>
<tr>
<td>d_{cross} Average (ft)</td>
<td>0.62</td>
</tr>
<tr>
<td>d_{cross} Standard Deviation (ft)</td>
<td>120.6</td>
</tr>
</tbody>
</table>
Simulation Examples

- Model Robustness
- Glideslope

<table>
<thead>
<tr>
<th></th>
<th>Turbulence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PI</td>
</tr>
<tr>
<td>Percent Successful (%)</td>
<td>41.7</td>
</tr>
<tr>
<td>ALT_{error} Average (ft)</td>
<td>8.3</td>
</tr>
<tr>
<td>ALT_{error} Standard Deviation (ft)</td>
<td>5.6</td>
</tr>
</tbody>
</table>

PI

QFT

Simulation Examples

- Model Robustness
- Glideslope

<table>
<thead>
<tr>
<th></th>
<th>Turbulence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PI</td>
</tr>
<tr>
<td>Percent Successful (%)</td>
<td>41.7</td>
</tr>
<tr>
<td>ALT_{error} Average (ft)</td>
<td>8.3</td>
</tr>
<tr>
<td>ALT_{error} Standard Deviation (ft)</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Simulation Examples

- Model Robustness
- Glideslope
Simulation Examples

- Model Robustness
- Autoflare

<table>
<thead>
<tr>
<th>Turbulence</th>
<th>PI</th>
<th>QFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Landings (%)</td>
<td>16</td>
<td>96</td>
</tr>
<tr>
<td>Hard Landings (%)</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Damage Landings (%)</td>
<td>67</td>
<td>2</td>
</tr>
<tr>
<td>VS_{TD} Average (ft/sec)</td>
<td>-15.3</td>
<td>-0.52</td>
</tr>
<tr>
<td>VS_{TD} Standard Deviation (ft/sec)</td>
<td>9.3</td>
<td>0.99</td>
</tr>
<tr>
<td>d_{flare} Average (ft)</td>
<td>109</td>
<td>669</td>
</tr>
<tr>
<td>d_{flare} Standard Deviation (ft)</td>
<td>278</td>
<td>223</td>
</tr>
<tr>
<td>θ_{TD} Average (deg)</td>
<td>-5.4</td>
<td>0.1</td>
</tr>
<tr>
<td>θ_{TD} Standard Deviation (deg)</td>
<td>9.4</td>
<td>0.93</td>
</tr>
</tbody>
</table>
Conclusions and Future Work

- Both controllers provide good performance
- In turbulence, both controllers show good robustness
- Both controllers show robustness to model uncertainties in still air
- In turbulent air, the QFT controller shows significantly better robustness to model uncertainties
 - PI controller meets specifications 16% of the time
 - QFT controller meets specifications 96% of the time

Future Work
- Examine crosswinds
- Evaluate various approach types
- Combination of PI and QFT techniques for inner and outer-loops
Questions?